Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canada’s first space telescope finds stellar ’Flat Liner’

01.07.2004


Discovery overturns 20 years of previous research

Canada’s first space telescope, celebrates its first birthday today, but its latest surprising results could spoil the party for other astronomers whose earlier results are now being questioned.

The MOST team used their tiny but powerful satellite as a stellar stethoscope to take the pulse of one of the best-known stars in the Galaxy, called Procyon (PRO-see-yon), and were shocked to discover their cosmic patient is a “flat liner”. The star shows none of the pulsations predicted by over 20 years of earlier theory and observations from Earth. The journal Nature will publish these unexpected findings on July 1.



“The lack of a pulse doesn’t mean the star Procyon is dead,” explained MOST Mission Scientist Dr. Jaymie Matthews of the University of British Columbia. “But it does mean that some of our long-held theories about stars like this need to be put on the critical list. And that future space missions following in the path of MOST will have to revise their target lists and observing strategies in light of this null result.”

MOST, which stands for Microvariability and Oscillations of Stars, is a Canadian Space Agency mission. UBC is the main contractor for the instrument and scientific operations of the MOST mission.

MOST is not much bigger than a suitcase but is able to measure the brightness variations of stars more precisely than any other instrument on Earth or in space. It was launched one year ago on June 30, aboard a modified Russian nuclear missile. To mark the occasion, MOST scientists celebrated with a birthday party complete with cake and dehydrated “space” ice cream.

“MOST is only one year old, but it’s proving to be a very precocious child,” said Roger Colley, a senior official from the Canadian Space Agency. “In its first six months of operation, MOST has already given us new perspectives on the stars we thought we knew best, the ones in our own Galactic backyard. In that way, it’s providing new insights into the Sun, the star we need to understand better to predict the future of our home planet.”

Michelle Cook | EurekAlert!
Further information:
http://www.ubc.ca
http://www.astro.ubc.ca/MOST/

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>