Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA and EADS-CASA sign contract to build instrument for the SMOS mission

18.06.2004


The Soil Moisture and Ocean Salinity mission will provide global maps of soil moisture and ocean salinity. Soil moisture data are urgently required for hydrological studies and data on ocean salinity are vital for improving our undertanding of ocean circulation patterns. Together these data will contribute to furthering our knowledge of the Earth’s water cycle, and will improve climate, weather and extreme-event forecasting.


A significant milestone in the development of ESA’s Soil Moisture and Ocean Salinity (SMOS) mission was reached last week when the contract to build the payload was signed between ESA and EADS (European Aeronautic Defence and Space Company)-CASA from Spain.

The contract, worth 62 million euros, was signed in Madrid, Spain on 11 June 2004 at the premises of the CDTI (Centre for Development of Industrial Technology). EADS-CASA now heads an industrial consortium of more than 20 companies from all over Europe, and is committed to construct the innovative MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) instrument that will form the core of the SMOS mission.

Scheduled for launch in early 2007, SMOS is the second Earth Explorer Opportunity mission to be implemented as part of ESA’s Living Planet Programme. The main aim of the mission is to further the development of climatological, meteorological and hydrological models by observing soil moisture over the Earth’s landmasses and sea-surface salinity over the oceans for a period of at least 3 years. At the signing ceremony, Prof. José Achache, ESA’s Director of Earth Observation Programmes, stated that, “SMOS will provide a major advancement in our ability to model and understand the global hydrological cycle.”



The moisture in soil and the salt in the oceans are intrinsically linked to the Earth’s water cycle and climate. Currently, in-situ measurements for soil moisture are sparse, but if we are to better understand the water cycle so that the forecasting of climate, weather and extreme events such as floods can be improved more data are urgently required. The same is true for data on ocean salinity - only a small fraction of the ocean is sampled on any regular basis. However, salinity is an important factor driving the currents in the ocean and in turn ocean circulation plays a crucial role moderating the climate. Therefore, comprehensive data on ocean salinity would greatly improve our knowledge of the conditions that influence global ocean circulation and thus climate.

Not only will this mission further our understanding of the Earth system, but it will also demonstrate a new measuring technique by adopting a completely different approach in the field of remote sensing. SMOS will carry the first-ever polar-orbiting satellite-borne
2-D interferometric radiometer. From an altitude of 763 km, the novel MIRAS instrument has been designed to capture images of microwave radiation emitted from the surface of the Earth at L-band (1.4 GHz).

MIRAS is made up of a central structure and three deployable arms. There are 69 antenna elements, so-called LICEF receivers, which are equally distributed over the central structure and three arms. Each LICEF is an antenna-receiver integrated unit that measures the radiation emitted from the Earth at L-band. The measuring principle takes advantage of the fact that moisture and salinity influence the emissivity of soil and seawater, respectively. From the information gathered, scientists will be able to derive maps of soil moisture and ocean salinity on a global scale.

Now that the contract has been signed to go ahead and build the payload the SMOS mission has taken a significant and exciting step forward in its development.

Ms Karina De Castris | ESA-ESRIN
Further information:
http://www.esa.int/esaSA/SEMLY93VQUD_earth_0.html

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>