Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA and EADS-CASA sign contract to build instrument for the SMOS mission

18.06.2004


The Soil Moisture and Ocean Salinity mission will provide global maps of soil moisture and ocean salinity. Soil moisture data are urgently required for hydrological studies and data on ocean salinity are vital for improving our undertanding of ocean circulation patterns. Together these data will contribute to furthering our knowledge of the Earth’s water cycle, and will improve climate, weather and extreme-event forecasting.


A significant milestone in the development of ESA’s Soil Moisture and Ocean Salinity (SMOS) mission was reached last week when the contract to build the payload was signed between ESA and EADS (European Aeronautic Defence and Space Company)-CASA from Spain.

The contract, worth 62 million euros, was signed in Madrid, Spain on 11 June 2004 at the premises of the CDTI (Centre for Development of Industrial Technology). EADS-CASA now heads an industrial consortium of more than 20 companies from all over Europe, and is committed to construct the innovative MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) instrument that will form the core of the SMOS mission.

Scheduled for launch in early 2007, SMOS is the second Earth Explorer Opportunity mission to be implemented as part of ESA’s Living Planet Programme. The main aim of the mission is to further the development of climatological, meteorological and hydrological models by observing soil moisture over the Earth’s landmasses and sea-surface salinity over the oceans for a period of at least 3 years. At the signing ceremony, Prof. José Achache, ESA’s Director of Earth Observation Programmes, stated that, “SMOS will provide a major advancement in our ability to model and understand the global hydrological cycle.”



The moisture in soil and the salt in the oceans are intrinsically linked to the Earth’s water cycle and climate. Currently, in-situ measurements for soil moisture are sparse, but if we are to better understand the water cycle so that the forecasting of climate, weather and extreme events such as floods can be improved more data are urgently required. The same is true for data on ocean salinity - only a small fraction of the ocean is sampled on any regular basis. However, salinity is an important factor driving the currents in the ocean and in turn ocean circulation plays a crucial role moderating the climate. Therefore, comprehensive data on ocean salinity would greatly improve our knowledge of the conditions that influence global ocean circulation and thus climate.

Not only will this mission further our understanding of the Earth system, but it will also demonstrate a new measuring technique by adopting a completely different approach in the field of remote sensing. SMOS will carry the first-ever polar-orbiting satellite-borne
2-D interferometric radiometer. From an altitude of 763 km, the novel MIRAS instrument has been designed to capture images of microwave radiation emitted from the surface of the Earth at L-band (1.4 GHz).

MIRAS is made up of a central structure and three deployable arms. There are 69 antenna elements, so-called LICEF receivers, which are equally distributed over the central structure and three arms. Each LICEF is an antenna-receiver integrated unit that measures the radiation emitted from the Earth at L-band. The measuring principle takes advantage of the fact that moisture and salinity influence the emissivity of soil and seawater, respectively. From the information gathered, scientists will be able to derive maps of soil moisture and ocean salinity on a global scale.

Now that the contract has been signed to go ahead and build the payload the SMOS mission has taken a significant and exciting step forward in its development.

Ms Karina De Castris | ESA-ESRIN
Further information:
http://www.esa.int/esaSA/SEMLY93VQUD_earth_0.html

More articles from Physics and Astronomy:

nachricht JILA researchers make coldest quantum gas of molecules
22.02.2019 | National Institute of Standards and Technology (NIST)

nachricht (Re)solving the jet/cocoon riddle of a gravitational wave event
22.02.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>