Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Chicago instrument ready to begin four-year study of Saturn’s rings

17.06.2004


After a quiet, six-and-a-half-year, 2.2-billion-mile journey to Saturn aboard NASA’s Cassini spacecraft, the University of Chicago’s dust detector will soon begin its attempt to help unravel the mystery of the planet’s legendary rings one tiny particle at a time.



Cassini will become the first spacecraft ever to enter Saturn’s orbit at precisely 9:30 p.m. CDT June 30. NASA launched Cassini in October 1997. The University’s instrument, called the High Rate Detector, has quietly recorded sporadic dust impacts in interplanetary space during the mission. "We have seen some impacts, but only a few, maybe one a month. That’s about all you’d expect," said Anthony Tuzzolino, a Senior Scientist at the University of Chicago’s Enrico Fermi Institute.

But that could change on June 30, after Cassini passes through a gap between two of Saturn’s rings. The rings consist of billions of objects ranging in size from microscopic particles to car-sized boulders locked into orbit around the planet.


"The project chose a virtually void section to pass through the ring system so we didn’t get clobbered," Tuzzolino said. "After ring-plane crossing, then we start the measurements of the trapped dust in Saturn’s system."

The $3 billion Cassini-Huygens mission is the most complex that has ever flown, involving 260 scientists from the United States and 17 European nations. Cassini and its Huygens probe are equipped with a total of 18 instruments. Cassini will release Huygens for a descent to the surface of Titan, Saturn’s largest moon, in December.

During the next four years, Cassini will orbit Saturn 76 times along different orbital planes and execute 52 close encounters with the planet’s 31 known moons. The University of Chicago detector will collect data the entire time as a component of a larger instrument, the German Cosmic Dust Analyzer. Together the two instruments will study the physical, chemical and dynamical properties of trapped Saturnian dust and its interactions with the planet’s rings, icy moons and magnetosphere.

The High Rate Detector instrument, which was built by Tuzzolino and tested with help from Thanasis Economou, Senior Scientist in the Enrico Fermi Institute, will measure particles ranging in size from twice the diameter of a human hair to particles 100 times smaller. The German instrument will measure even smaller particles.

The University of Chicago instrument is capable of detecting 100,000 particles per second as they collide with two small detectors mounted on the larger German instrument. "I wanted that capability, and it’s paid off many times," said Tuzzolino, who has contributed his expertise to dozens of NASA missions during the last four decades.

Last January, an instrument similar to the Cassini detector flew aboard the Stardust spacecraft during its encounter with Comet Wild 2. "On Stardust we had 2,000 counts in less than one second," Tuzzolino said. "You must have a high counting rate capability to make these kind of measurements."

And from 1999 to 2002, another Chicago dust detector flew aboard an Air Force satellite to study orbital debris. During that mission, the instrument detected a cloud of tiny debris particles that was scattered into space when the upper stage of a Chinese rocket unexpectedly exploded in orbit in 2000. The detection marked the first time that scientists had been able to link ultra-small particles to the break-up of a particular satellite.

Tuzzolino looks forward to more unexpected results from Saturn and its moons. "There’s a lot for us to learn," he said.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Rapid water formation in diffuse interstellar clouds
25.06.2018 | Max-Planck-Institut für Kernphysik

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>