Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Chicago instrument ready to begin four-year study of Saturn’s rings

17.06.2004


After a quiet, six-and-a-half-year, 2.2-billion-mile journey to Saturn aboard NASA’s Cassini spacecraft, the University of Chicago’s dust detector will soon begin its attempt to help unravel the mystery of the planet’s legendary rings one tiny particle at a time.



Cassini will become the first spacecraft ever to enter Saturn’s orbit at precisely 9:30 p.m. CDT June 30. NASA launched Cassini in October 1997. The University’s instrument, called the High Rate Detector, has quietly recorded sporadic dust impacts in interplanetary space during the mission. "We have seen some impacts, but only a few, maybe one a month. That’s about all you’d expect," said Anthony Tuzzolino, a Senior Scientist at the University of Chicago’s Enrico Fermi Institute.

But that could change on June 30, after Cassini passes through a gap between two of Saturn’s rings. The rings consist of billions of objects ranging in size from microscopic particles to car-sized boulders locked into orbit around the planet.


"The project chose a virtually void section to pass through the ring system so we didn’t get clobbered," Tuzzolino said. "After ring-plane crossing, then we start the measurements of the trapped dust in Saturn’s system."

The $3 billion Cassini-Huygens mission is the most complex that has ever flown, involving 260 scientists from the United States and 17 European nations. Cassini and its Huygens probe are equipped with a total of 18 instruments. Cassini will release Huygens for a descent to the surface of Titan, Saturn’s largest moon, in December.

During the next four years, Cassini will orbit Saturn 76 times along different orbital planes and execute 52 close encounters with the planet’s 31 known moons. The University of Chicago detector will collect data the entire time as a component of a larger instrument, the German Cosmic Dust Analyzer. Together the two instruments will study the physical, chemical and dynamical properties of trapped Saturnian dust and its interactions with the planet’s rings, icy moons and magnetosphere.

The High Rate Detector instrument, which was built by Tuzzolino and tested with help from Thanasis Economou, Senior Scientist in the Enrico Fermi Institute, will measure particles ranging in size from twice the diameter of a human hair to particles 100 times smaller. The German instrument will measure even smaller particles.

The University of Chicago instrument is capable of detecting 100,000 particles per second as they collide with two small detectors mounted on the larger German instrument. "I wanted that capability, and it’s paid off many times," said Tuzzolino, who has contributed his expertise to dozens of NASA missions during the last four decades.

Last January, an instrument similar to the Cassini detector flew aboard the Stardust spacecraft during its encounter with Comet Wild 2. "On Stardust we had 2,000 counts in less than one second," Tuzzolino said. "You must have a high counting rate capability to make these kind of measurements."

And from 1999 to 2002, another Chicago dust detector flew aboard an Air Force satellite to study orbital debris. During that mission, the instrument detected a cloud of tiny debris particles that was scattered into space when the upper stage of a Chinese rocket unexpectedly exploded in orbit in 2000. The detection marked the first time that scientists had been able to link ultra-small particles to the break-up of a particular satellite.

Tuzzolino looks forward to more unexpected results from Saturn and its moons. "There’s a lot for us to learn," he said.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>