Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Chicago instrument ready to begin four-year study of Saturn’s rings

17.06.2004


After a quiet, six-and-a-half-year, 2.2-billion-mile journey to Saturn aboard NASA’s Cassini spacecraft, the University of Chicago’s dust detector will soon begin its attempt to help unravel the mystery of the planet’s legendary rings one tiny particle at a time.



Cassini will become the first spacecraft ever to enter Saturn’s orbit at precisely 9:30 p.m. CDT June 30. NASA launched Cassini in October 1997. The University’s instrument, called the High Rate Detector, has quietly recorded sporadic dust impacts in interplanetary space during the mission. "We have seen some impacts, but only a few, maybe one a month. That’s about all you’d expect," said Anthony Tuzzolino, a Senior Scientist at the University of Chicago’s Enrico Fermi Institute.

But that could change on June 30, after Cassini passes through a gap between two of Saturn’s rings. The rings consist of billions of objects ranging in size from microscopic particles to car-sized boulders locked into orbit around the planet.


"The project chose a virtually void section to pass through the ring system so we didn’t get clobbered," Tuzzolino said. "After ring-plane crossing, then we start the measurements of the trapped dust in Saturn’s system."

The $3 billion Cassini-Huygens mission is the most complex that has ever flown, involving 260 scientists from the United States and 17 European nations. Cassini and its Huygens probe are equipped with a total of 18 instruments. Cassini will release Huygens for a descent to the surface of Titan, Saturn’s largest moon, in December.

During the next four years, Cassini will orbit Saturn 76 times along different orbital planes and execute 52 close encounters with the planet’s 31 known moons. The University of Chicago detector will collect data the entire time as a component of a larger instrument, the German Cosmic Dust Analyzer. Together the two instruments will study the physical, chemical and dynamical properties of trapped Saturnian dust and its interactions with the planet’s rings, icy moons and magnetosphere.

The High Rate Detector instrument, which was built by Tuzzolino and tested with help from Thanasis Economou, Senior Scientist in the Enrico Fermi Institute, will measure particles ranging in size from twice the diameter of a human hair to particles 100 times smaller. The German instrument will measure even smaller particles.

The University of Chicago instrument is capable of detecting 100,000 particles per second as they collide with two small detectors mounted on the larger German instrument. "I wanted that capability, and it’s paid off many times," said Tuzzolino, who has contributed his expertise to dozens of NASA missions during the last four decades.

Last January, an instrument similar to the Cassini detector flew aboard the Stardust spacecraft during its encounter with Comet Wild 2. "On Stardust we had 2,000 counts in less than one second," Tuzzolino said. "You must have a high counting rate capability to make these kind of measurements."

And from 1999 to 2002, another Chicago dust detector flew aboard an Air Force satellite to study orbital debris. During that mission, the instrument detected a cloud of tiny debris particles that was scattered into space when the upper stage of a Chinese rocket unexpectedly exploded in orbit in 2000. The detection marked the first time that scientists had been able to link ultra-small particles to the break-up of a particular satellite.

Tuzzolino looks forward to more unexpected results from Saturn and its moons. "There’s a lot for us to learn," he said.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Thin films from Braunschweig on the way to Mercury
19.10.2018 | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

nachricht Extremely close look at electron advances frontiers in particle physics
19.10.2018 | National Science Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>