Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key theory of galaxy formation no longer conflicts with observations

09.06.2004


Astrophysicists led by the University of Chicago’s Andrey Kravtsov have resolved an embarrassing contradiction between a favored theory of how galaxies form and what astronomers see in their telescopes.



Astrophysicists base their understanding of how galaxies form on an extension of the big bang theory called the cold dark matter theory. In this latter theory, small galaxies collide and merge, inducing bursts of star formation that create the different types of massive and bright galaxies that astronomers see in the sky today. (Dark matter takes its name from the idea that 85 percent of the total mass of the universe is made of unknown matter that is invisible to telescopes, but whose gravitational effects can be measured on luminous galaxies.)

This theory fits some key data that astrophysicists have collected in recent years. Unfortunately, when astrophysicists ran supercomputer simulations several years ago, they ended up with 10 times more dark matter satellites--clumps of dark matter orbiting a large galaxy--than they expected.


"The problem has been that the simulations don’t match the observations of galaxy properties," said David Spergel, professor of astrophysics at Princeton University. "What Andrey’s work represents is a very plausible solution to this problem."

Kravtsov and his collaborators found the potential solution in new supercomputer simulations they will describe in a paper that will appear in the July 10 issue of the Astrophysical Journal. "The solution to the problem is likely to be in the way the dwarf galaxies evolve," Kravtsov said, referring to the small galaxies that inhabit the fringes of large galaxies.

In general, astrophysicists believe that formation of very small dwarf galaxies should be suppressed. This is because gas required for continued formation of stars can be heated and expelled by the first generation of exploding supernovae stars. In addition, ultraviolet radiation from galaxies and quasars that began to fill the universe approximately 12 billion years ago heats the intergalactic gas, shutting down the supply of fresh gas to dwarf galaxies.

In the simulations, Kravtsov, along with Oleg Gnedin of the Space Telescope Science Institute and Anatoly Klypin of New Mexico State University, found that some of the dwarf galaxies that are small today have been more massive in the past and could gravitationally collect the gas they need to form stars and become a galaxy.

"The systems that appear rather feeble and anemic today could, in their glory days, form stars for a relatively brief period," Kravtsov said. "After a period of rapid mass growth, they lost the bulk of their mass when they experienced strong tidal forces from their host galaxy and other galaxies surrounding them."

This galactic "cannibalism" persists even today, with many of the "cannibalized" dwarf galaxies becoming satellites orbiting in the gravitational pull of larger galaxies.

"Just like the planets in the solar system surrounding the sun, our Milky Way galaxy and its nearest neighbor, the Andromeda galaxy, are surrounded by about a dozen faint ’dwarf’ galaxies," Kravtsov said. "These objects were pulled in by the gravitational attraction of the Milky Way and Andromeda some time ago during their evolution."

The simulations had succeeded where others had failed because Kravtsov’s team analyzed simulations that were closely spaced in time at high resolution. This allowed the team to track the evolution of individual objects in the simulations. "This is rather difficult and is not often done in analyses of cosmological simulations. But in this case it was the key to recognize what was going on and get the result," Kravtsov said.

The result puts the cold dark matter scenario on more solid ground. Scientists had attempted to modify the main tenets of the scenario and the properties of dark matter particles to eliminate the glaring discrepancy between theory and observation of dwarf galaxies. "It turns out that the proposed modifications introduced more problems than they solved," Kravtsov said.


The simulations were performed at the National Center for Supercomputer Applications, University of Illinois at Urbana-Champaign, with grants provided by the National Science Foundation and the National Aeronautics and Space Administration.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>