Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum mechanical ’tune up’ for better measurement

07.06.2004


By exploiting the weird quantum behavior of atoms, physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have demonstrated a new technique that someday could be used to save weeks of measurements needed to operate ultraprecise atomic clocks. The technique also could be used to improve the precision of other measurement processes such as spectroscopy.

The technique, described in today’s issue of Science, effectively turns atoms into better frequency sensors. Eventually, the technique could help scientists measure the ticks of an atomic clock faster and more accurately. Just as a grandfather clock uses the regular swings of a pendulum to count off each second of time, an atomic clock produces billions of ticks per second by detecting the regular oscillations of atoms. The trick to producing extremely accurate atomic clocks is to measure this frequency very precisely for a specific atom.

In the latest experiment, the scientists used very brief pulses of ultraviolet light in a NIST-developed technique to put three beryllium ions (charged atoms) into a special quantum state called entanglement. In simple terms, entanglement involves correlating the fates of two or more atoms such that their behavior--in concert--is very different from the independent actions of unentangled atoms. One effect is that, once a measurement is made on one atom, it becomes possible to predict the result of a measurement on another. When applied to atoms in an atomic clock, the effect is that n entangled atoms will tick n times faster than the unentangled atoms.



Currently, scientists at NIST and other laboratories make many thousands of measurements of the ticks of unentangled atoms and average these results to get highly accurate atomic clocks (currently keeping time to better than one second in 40 million years).

If entangled atoms could be used in a clock, the same or better results could be achieved with far fewer separate measurements. The current experiment demonstrates this new approach to precision measurement with three ions; however, the researchers are looking forward to entangling even more ions to take greater advantage of the technique.

"Even if we could implement this new technique with only 10 ions, in the clock business that’s really important because the clocks must be averaged for weeks and even months," says NIST physicist Dave Wineland, leader of the research group. "The time needed to do that would be reduced by a factor of 10."

In the experiment reported in Science, scientists entangled the ions with two laser beams, using a technique originally developed for quantum computing applications. The ions are hit with another series of laser pulses and their fluorescence (emitted light, which represents the ions’ quantum state) is measured for a specific period of time. The duration of the steps, number of ions, and other experimental conditions are controlled carefully to ensure all the ions are in the same state when they are measured, so that either all or none fluoresce, which simplifies the readout.


###
The research was supported in part by the Advanced Research and Development Activity and the National Security Agency.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.


Laura Ost | NIST
Further information:
http://www.nist.gov/public_affairs/releases/quantumtuneup.html

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Innovative Infrared heat reduces energy consumption in coating packaging for food

12.12.2018 | Trade Fair News

New Foldable Drone Flies through Narrow Holes in Rescue Missions

12.12.2018 | Information Technology

Obtaining polyester from plant oil

12.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>