Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum mechanical ’tune up’ for better measurement

07.06.2004


By exploiting the weird quantum behavior of atoms, physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have demonstrated a new technique that someday could be used to save weeks of measurements needed to operate ultraprecise atomic clocks. The technique also could be used to improve the precision of other measurement processes such as spectroscopy.

The technique, described in today’s issue of Science, effectively turns atoms into better frequency sensors. Eventually, the technique could help scientists measure the ticks of an atomic clock faster and more accurately. Just as a grandfather clock uses the regular swings of a pendulum to count off each second of time, an atomic clock produces billions of ticks per second by detecting the regular oscillations of atoms. The trick to producing extremely accurate atomic clocks is to measure this frequency very precisely for a specific atom.

In the latest experiment, the scientists used very brief pulses of ultraviolet light in a NIST-developed technique to put three beryllium ions (charged atoms) into a special quantum state called entanglement. In simple terms, entanglement involves correlating the fates of two or more atoms such that their behavior--in concert--is very different from the independent actions of unentangled atoms. One effect is that, once a measurement is made on one atom, it becomes possible to predict the result of a measurement on another. When applied to atoms in an atomic clock, the effect is that n entangled atoms will tick n times faster than the unentangled atoms.



Currently, scientists at NIST and other laboratories make many thousands of measurements of the ticks of unentangled atoms and average these results to get highly accurate atomic clocks (currently keeping time to better than one second in 40 million years).

If entangled atoms could be used in a clock, the same or better results could be achieved with far fewer separate measurements. The current experiment demonstrates this new approach to precision measurement with three ions; however, the researchers are looking forward to entangling even more ions to take greater advantage of the technique.

"Even if we could implement this new technique with only 10 ions, in the clock business that’s really important because the clocks must be averaged for weeks and even months," says NIST physicist Dave Wineland, leader of the research group. "The time needed to do that would be reduced by a factor of 10."

In the experiment reported in Science, scientists entangled the ions with two laser beams, using a technique originally developed for quantum computing applications. The ions are hit with another series of laser pulses and their fluorescence (emitted light, which represents the ions’ quantum state) is measured for a specific period of time. The duration of the steps, number of ions, and other experimental conditions are controlled carefully to ensure all the ions are in the same state when they are measured, so that either all or none fluoresce, which simplifies the readout.


###
The research was supported in part by the Advanced Research and Development Activity and the National Security Agency.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.


Laura Ost | NIST
Further information:
http://www.nist.gov/public_affairs/releases/quantumtuneup.html

More articles from Physics and Astronomy:

nachricht Original kilogram replaced -- new International System of Units (SI) entered into force
22.05.2019 | Forschungsverbund Berlin

nachricht Stellar waltz with dramatic ending
22.05.2019 | University of Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>