Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOODS uncovers hidden black holes in the distant universe

02.06.2004


Images from NASA’s new Spitzer Space Telescope have allowed researchers to detect the long sought population of "missing" supermassive black holes that powered the bright cores of the earliest active galaxies in the young universe. The discovery completes a full accounting of all the X-ray sources seen in one of the deepest surveys of the universe ever taken. The results were presented at the meeting of the American Astronomical Society in Denver, Colorado.



Mark Dickinson, of the National Optical Astronomy Observatory in Tucson, Ariz., and Principal Investigator for the new observations, says, "With these ultra-deep Spitzer images, we are easily seeing objects throughout time and space, out to redshifts of 6 or more, where the most distant known galaxies lie. Moreover, we see some objects that are completely invisible to optical telescopes, but whose existence was hinted at by previous observations from the Chandra and Hubble Observatories."

The project combined the power of NASA’s three Great Observatories in space - the Hubble Space Telescope (HST), the Chandra X-ray Observatory, and the Spitzer Space Telescope (SST). All three telescopes peered across 13 billion light-years of space into a small region of dark sky (called the Great Observatories Origins Deep Survey, GOODS) that is ideal for perusing thousands of galaxies.


Each observatory works with different wavelengths of electromagnetic radiation; Chandra detects high-energy X-rays, Hubble discriminates visible light, and Spitzer recognizes the infrared. Their combined data gave images that were not possible with data from any one observatory alone.

"The great sensitivity of the new Spitzer infrared cameras, and with the superb spatial resolution of Chandra and Hubble, means that finding all of the black holes in distant galaxies is now possible," says GOODS astronomer Meg Urry, professor of physics and astronomy, and Director of the Yale Center for Astronomy & Astrophysics at Yale University.

Chandra detected X-rays from over two hundred X-ray sources believed to be supermassive black holes lying in the centers of young galaxies. The X-rays are produced by interstellar gas that is attracted by the gravity of the black holes and is heated to very high temperatures just before it falls in.

Combining data from the three Great Observatories, Urry’s team took a census of the supermassive black holes that formed 2-5 billion years after the big bang. Theoretical arguments had suggested that most of these young black holes are shrouded by dust but few had previously been found. Now the GOODS data have verified that "most, perhaps three-quarters, of the active galactic nuclei in the early Universe are shrouded," says Urry. They were missed because their visible radiation is so dim they look like faint, ordinary galaxies. "With the new Spitzer data," says Urry, "these very luminous, distant objects are easily visible."

"The longer-wavelength Spitzer data still to come will reveal even more shrouded AGNs," she adds, "including some, missed even by X-ray observations that look like ultraluminous infrared galaxies."

Seven of the objects detected in the Spitzer images may be part of the long-sought population of "missing" supermassive black holes that powered the bright cores of the very earliest active galaxies. Hubble’s Advanced Camera for surveys revealed optical galaxies around almost all the X-ray black holes. However, there remained seven mysterious X-ray sources for which there was no optical galaxy in the Hubble images.

Astronomer Anton Koekemoer of the Space Telescope Science Institute in Baltimore, Md., who discovered these sources, presented three intriguing possibilities for their origin: "The galaxies around these black holes may be completely hidden by thick clouds of dust absorbing all their light, or may contain very old, red stars. Or some of them could be the most distant black holes ever observed - perhaps as far as 13 billion light-years." In this case all their optical light would be shifted to very long infrared wavelengths by expansion of the Universe.

Because Spitzer observes in infrared light, at wavelengths up to 100 times longer than those probed by Hubble, it was able to detect the telltale infrared glow from the host galaxies around these optically invisible X-ray black holes. Additional Spitzer observations later this year will help confirm what kind of objects these are.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu/
http://www.spitzer.caltech.nasa.gov/
http://hubblesite.org/news/2004/19

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>