Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOODS uncovers hidden black holes in the distant universe

02.06.2004


Images from NASA’s new Spitzer Space Telescope have allowed researchers to detect the long sought population of "missing" supermassive black holes that powered the bright cores of the earliest active galaxies in the young universe. The discovery completes a full accounting of all the X-ray sources seen in one of the deepest surveys of the universe ever taken. The results were presented at the meeting of the American Astronomical Society in Denver, Colorado.



Mark Dickinson, of the National Optical Astronomy Observatory in Tucson, Ariz., and Principal Investigator for the new observations, says, "With these ultra-deep Spitzer images, we are easily seeing objects throughout time and space, out to redshifts of 6 or more, where the most distant known galaxies lie. Moreover, we see some objects that are completely invisible to optical telescopes, but whose existence was hinted at by previous observations from the Chandra and Hubble Observatories."

The project combined the power of NASA’s three Great Observatories in space - the Hubble Space Telescope (HST), the Chandra X-ray Observatory, and the Spitzer Space Telescope (SST). All three telescopes peered across 13 billion light-years of space into a small region of dark sky (called the Great Observatories Origins Deep Survey, GOODS) that is ideal for perusing thousands of galaxies.


Each observatory works with different wavelengths of electromagnetic radiation; Chandra detects high-energy X-rays, Hubble discriminates visible light, and Spitzer recognizes the infrared. Their combined data gave images that were not possible with data from any one observatory alone.

"The great sensitivity of the new Spitzer infrared cameras, and with the superb spatial resolution of Chandra and Hubble, means that finding all of the black holes in distant galaxies is now possible," says GOODS astronomer Meg Urry, professor of physics and astronomy, and Director of the Yale Center for Astronomy & Astrophysics at Yale University.

Chandra detected X-rays from over two hundred X-ray sources believed to be supermassive black holes lying in the centers of young galaxies. The X-rays are produced by interstellar gas that is attracted by the gravity of the black holes and is heated to very high temperatures just before it falls in.

Combining data from the three Great Observatories, Urry’s team took a census of the supermassive black holes that formed 2-5 billion years after the big bang. Theoretical arguments had suggested that most of these young black holes are shrouded by dust but few had previously been found. Now the GOODS data have verified that "most, perhaps three-quarters, of the active galactic nuclei in the early Universe are shrouded," says Urry. They were missed because their visible radiation is so dim they look like faint, ordinary galaxies. "With the new Spitzer data," says Urry, "these very luminous, distant objects are easily visible."

"The longer-wavelength Spitzer data still to come will reveal even more shrouded AGNs," she adds, "including some, missed even by X-ray observations that look like ultraluminous infrared galaxies."

Seven of the objects detected in the Spitzer images may be part of the long-sought population of "missing" supermassive black holes that powered the bright cores of the very earliest active galaxies. Hubble’s Advanced Camera for surveys revealed optical galaxies around almost all the X-ray black holes. However, there remained seven mysterious X-ray sources for which there was no optical galaxy in the Hubble images.

Astronomer Anton Koekemoer of the Space Telescope Science Institute in Baltimore, Md., who discovered these sources, presented three intriguing possibilities for their origin: "The galaxies around these black holes may be completely hidden by thick clouds of dust absorbing all their light, or may contain very old, red stars. Or some of them could be the most distant black holes ever observed - perhaps as far as 13 billion light-years." In this case all their optical light would be shifted to very long infrared wavelengths by expansion of the Universe.

Because Spitzer observes in infrared light, at wavelengths up to 100 times longer than those probed by Hubble, it was able to detect the telltale infrared glow from the host galaxies around these optically invisible X-ray black holes. Additional Spitzer observations later this year will help confirm what kind of objects these are.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu/
http://www.spitzer.caltech.nasa.gov/
http://hubblesite.org/news/2004/19

More articles from Physics and Astronomy:

nachricht Weighing planets and asteroids
23.10.2018 | Max-Planck-Institut für Radioastronomie

nachricht Extremely Thin, Stable, and Bright: Materials for the Photonics of Tomorrow
23.10.2018 | Universität Bremen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>