Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory finds middle ground between conflicting evidence for first stars

02.06.2004


The very first stars that formed early in the history of the universe were smaller than the massive giants implied by the results of a NASA research satellite, but still larger than the typical stars found in our galaxy today, according to a research team led by the University of Chicago’s Jason Tumlinson.




"We have managed to reconcile within a single theory the two very different leading indicators of the nature of the first stars," said Tumlinson, the Edwin Hubble Scientist in Astronomy & Astrophysics at the University of Chicago. Tumlinson will present the theory June 1 at the American Astronomical Society meeting in Denver. His co-authors are the University of Colorado’s Aparna Venkatesan and J. Michael Shull.

No telescope is powerful enough yet to see the first stars, but astronomers can guess at their existence based on the stellar clues they leave behind. In 2001 and 2002, NASA’s Wilkinson Microwave Anistropy Probe (WMAP) looked at the oldest light in the universe left over from the big bang, the cosmic microwave background, and found one such clue in the form of ionized (electrically charged) gas floating between the galaxies. WMAP showed that this intergalactic gas was ionized approximately 200 million years after the big bang.


"Very massive stars, with roughly 200 to 500 times the mass of the sun, and more massive than we see anywhere today, are extremely efficient at producing this ionizing radiation," Tumlinson said. This implies that the earliest stars were massive enough to cause the ionization.

But the oldest stars in our galaxy that astronomers can see in the sky today are on average approximately 13 billion years old. "They would have formed just after the first stars and out of the very gas and heavy elements that were strewn into space when the earliest stars exploded as supernovae," said Venkatesan, a National Science Foundation Fellow at Colorado and 2000 University of Chicago Ph.D. alumna.

The problem is that the ratio of heavy elements observed in the second generation of stars could not have been produced in the most massive stars associated with the WMAP studies.

"It was our goal to reconcile these two conflicting pieces of evidence," Tumlinson said.

His team reconciled the evidence by formulating a theory showing how stars with a mass of 20 to 100 times that of the sun could both be large enough to satisfy the WMAP results, yet still produce the ratio of heavy elements detected by ground-based telescopes in very old stars.

"We’re not saying the very massive stars couldn’t have formed at some low level. We’re saying that for early heavy element production you need mostly stars that are massive but not extremely massive."

This theory meshes well with what astronomers know about how stars of various masses form in the galaxy.

"There are a lot of very low-mass stars like the sun, and as you go up in stellar mass, the numbers get more rare," Tumlinson said. "There are a very few stars of high mass, say a hundred solar masses in our galaxy. According to our theory, these massive stars were much more common in the first generation."

Problems that remain to be solved include determining how long the conditions could be maintained for forming the first stars from primordial gas and how these objects can be detected in the future, Venkatesan said.

"Predicting how the first stars affect their environment and whether they resemble the stars in our own galactic backyard at all is a critical input for the planning of future telescopes and instruments and in interpreting their data," she said.


The project was funded by NASA and the National Science Foundation.

Steve Koppes | EurekAlert!
Further information:
http://astro.uchicago.edu/

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>