Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chandra opens new line of investigation on dark energy

19.05.2004


Astronomers have detected and probed dark energy by applying a powerful, new method that uses images of galaxy clusters made by NASA’s Chandra X-ray Observatory. The results trace the transition of the expansion of the Universe from a decelerating to an accelerating phase several billion years ago, and give intriguing clues about the nature of dark energy and the fate of the Universe.


Chandra X-ray Image of Abell 2029
NASA/CXC/IoA/S.Allen et al.)



"Dark energy is perhaps the biggest mystery in physics," said Steve Allen of the Institute of Astronomy (IoA) at the University of Cambridge in England, and leader of the study. "As such, it is extremely important to make an independent test of its existence and properties."

Allen and his colleagues used Chandra to study 26 clusters of galaxies at distances corresponding to light travel times of between one and eight billion years. These data span the time when the Universe slowed from its original expansion, before speeding up again because of the repulsive effect of dark energy.


"We’re directly seeing that the expansion of the Universe is accelerating by measuring the distances to these galaxy clusters," said Andy Fabian also of the IoA, a co-author on the study. The new Chandra results suggest that the dark energy density does not change quickly with time and may even be constant, consistent with the "cosmological constant" concept first introduced by Albert Einstein. If so, the Universe is expected to continue expanding forever, so that in many billions of years only a tiny fraction of the known galaxies will be observable.

If the dark energy density is constant, more dramatic fates for the Universe would be avoided. These include the "Big Rip," where dark energy increases until galaxies, stars, planets and eventually atoms are eventually torn apart. The "Big Crunch," where the Universe eventually collapses on itself, would also be ruled out.

Chandra’s probe of dark energy relies on the unique ability of X-ray observations to detect and study the hot gas in galaxy clusters. From these data, the ratio of the mass of the hot gas and the mass of the dark matter in a cluster can be determined. The observed values of the gas fraction depend on the assumed distance to the cluster, which in turn depends on the curvature of space and the amount of dark energy in the universe.

Because galaxy clusters are so large, they are thought to represent a fair sample of the matter content in the universe. If so, then relative amounts of hot gas and dark matter should be the same for every cluster. Using this assumption, Allen and colleagues adjusted the distance scale to determine which one fit the data best. These distances show that the expansion of the Universe was first decelerating and then began to accelerate about six billion years ago.

Chandra’s observations agree with supernova results including those from the Hubble Space Telescope (HST), which first showed dark energy’s effect on the acceleration of the Universe. Chandra’s results are completely independent of the supernova technique - both in wavelength and the objects observed. Such independent verification is a cornerstone of science. In this case it helps to dispel any remaining doubts that the supernova technique is flawed.

"Our Chandra method has nothing to do with other techniques, so they’re definitely not comparing notes, so to speak," said Robert Schmidt of University of Potsdam in Germany, another coauthor on the study.

Better limits on the amount of dark energy and how it varies with time are obtained by combining the X-ray results with data from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP), which used observations of the cosmic microwave background radiation to discover evidence for dark energy in the very early Universe. Using the combined data, Allen and his colleagues found that dark energy makes up about 75% of the Universe, dark matter about 21%, and visible matter about 4%.

Allen and his colleagues stress that the uncertainties in the measurements are such that the data are consistent with dark energy having a constant value. The present Chandra data do, however, allow for the possibility that the dark energy density is increasing with time. More detailed studies with Chandra, HST, WMAP and with the future mission Constellation-X should provide much more precise constraints on dark energy.

"Until we better understand cosmic acceleration and the nature of the dark energy we cannot hope to understand the destiny of the Universe," said independent commentator Michael Turner, of the University of Chicago.

The team conducting the research also included Harald Ebeling of the University of Hawaii and the late Leon van Speybroeck of the Harvard-Smithsonian Center for Astrophysics. These results will appear in an upcoming issue of the Monthly Notices of the Royal Astronomy Society.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA’s Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2004/04-144.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>