Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic Ballet or Devil’s Mask?

28.04.2004


Very Large Telescope Witnesses Close Interaction in Galaxy Family




Stars like our Sun are members of galaxies, and most galaxies are themselves members of clusters of galaxies. In these, they move around among each other in a mostly slow and graceful ballet. But every now and then, two or more of the members may get too close for comfort - the movements become hectic, sometimes indeed dramatic, as when galaxies end up colliding.

ESO PR Photo 12/04 shows an example of such a cosmic tango. This is the superb triple system NGC 6769-71, located in the southern Pavo constellation (the Peacock) at a distance of 190 million light-years.


This composite image was obtained on April 1, 2004, the day of the Fifth Anniversary of ESO’s Very Large Telescope (VLT). It was taken in the imaging mode of the VIsible Multi-Object Spectrograph (VIMOS) on Melipal, one of the four 8.2-m Unit Telescopes of the VLT at the Paranal Observatory (Chile). The two upper galaxies, NGC 6769 (upper right) and NGC 6770 (upper left), are of equal brightness and size, while NGC 6771 (below) is about half as bright and slightly smaller. All three galaxies possess a central bulge of similar brightness. They consist of elderly, reddish stars and that of NGC 6771 is remarkable for its “boxy” shape, a rare occurrence among galaxies.

Gravitational interaction in a small galaxy group

NGC 6769 is a spiral galaxy with very tightly wound spiral arms, while NGC 6770 has two major spiral arms, one of which is rather straight and points towards the outer disc of NGC 6769. NGC 6770 is also peculiar in that it presents two comparatively straight dark lanes and a fainter arc that curves towards the third galaxy, NGC 6771 (below). It is also obvious from this new VLT photo that stars and gas have been stripped off NGC 6769 and NGC 6770, starting to form a common envelope around them, in the shape of a Devil’s Mask. There is also a weak hint of a tenuous bridge between NGC 6769 and NGC 6771. All of these features testify to strong gravitational interaction between the three galaxies. The warped appearance of the dust lane in NGC 6771 might also be interpreted as more evidence of interactions.

Moreover, NGC 6769 and NGC 6770 are receding from us at a similar velocity of about 3800 km/s - a redshift just over 0.01 - while that of NGC 6771 is slightly larger, 4200 km/s.

A stellar baby-boom

As dramatic and destructive as this may seem, such an event is also an enrichment, a true baby-star boom. As the Phoenix reborn from its ashes, a cosmic catastrophe like this one normally results in the formation of many new stars. This is obvious from the blueish nature of the spiral arms in NGC 6769 and NGC 6770 and the presence of many sites of star forming regions.

Similarly, the spiral arms of the well-known Whirlpool galaxy (Messier 51) may have been produced by a close encounter with a second galaxy that is now located at the end of one of the spiral arms; the same may be true for the beautiful southern galaxy NGC 1232 depicted in another VLT photo (PR Photo 37d/98).

Nearer to us, a stream of hydrogen gas, similar to the one seen in ESO PR Photo 12/04, connects our Galaxy with the LMC, a relict of dramatic events in the history of our home Galaxy. And the stormy time is not yet over: now the Andromeda Galaxy, another of the Milky Way neighbours in the Local Group of Galaxies, is approaching us. Still at a distance of over 2 million light-years, calculations predict that it will collide with our galaxy in about 6,000 million years!

Richard West | ESO
Further information:
http://www.eso.org/outreach/press-rel/pr-2004/phot-12-04.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>