Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titanic Weather Forecasting: New Detailed VLT Images of the Largest Moon in the Solar System

01.04.2004


Optimizing space missions



Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan.

Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface.


Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO)[1]in combination with ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution.

Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second.

The southern smile

A team of French astronomers [2] have recently used the NACO state-of-the-art adaptive optics system on the fourth 8.2-m VLT unit telescope, Yepun, to map the surface of Titan by means of near-infrared images and to search for changes in the dense atmosphere.

These extraordinary images have a nominal resolution of 1/30th arcsec and show details of the order of 200 km on the surface of Titan. To provide the best possible views, the raw data from the instrument were subjected to deconvolution (image sharpening).

Images of Titan were obtained through 9 narrow-band filters, sampling near-infrared wavelengths with large variations in methane opacity. This permits sounding of different altitudes ranging from the stratosphere to the surface.

Titan harbours at 1.24 and 2.12 microns a “southern smile”, that is a north-south asymmetry, while the opposite situation is observed with filters probing higher altitudes, such as 1.64, 1.75 and 2.17 microns.

A high-contrast bright feature is observed at the South Pole and is apparently caused by a phenomenon in the atmosphere, at an altitude below 140 km or so. This feature was found to change its location on the images from one side of the south polar axis to the other during the week of observations.

Outlook

An additional series of NACO observations of Titan is foreseen later this month (April 2004). These will be a great asset in helping optimize the return of the Cassini/Huygens mission. Several of the instruments aboard the spacecraft depend on such ground-based data to better infer the properties of Titan’s surface and lower atmosphere.

Although the astronomers have yet to model and interpret the physical and geophysical phenomena now observed and to produce a full cartography of the surface, this first analysis provides a clear demonstration of the marvellous capabilities of the NACO imaging system. More examples of the exciting science possible with this facility will be found in a series of five papers published today in the European research journal Astronomy & Astrophysics (Vol. 47, L1 to L24).

More information

The results presented here are based on an article published in Astronomy & Astrophysics (A&A 417, L21-24, 2004): “VLT/NACO adaptive optics imaging of Titan” by E. Gendron et al.
Images of Saturn taken with NACO can be found in ESO PR Photo 04a/02.

Notes

1 NACO is an abbreviation of NAOS/CONICA. The NAOS adaptive optics corrector was built, under an ESO contract, by Office National d’Etudes et de Recherches Aérospatiales (ONERA), Laboratoire d’Astrophysique de Grenoble (LAOG) and the LESIA and GEPI laboratories of the Observatoire de Paris in France, in collaboration with ESO. The CONICA infra-red camera was built, under an ESO contract, by the Max-Planck-Institut für Astronomie (MPIA) (Heidelberg) and the Max-Planck Institut für Extraterrestrische Physik (MPE) (Garching) in Germany, in collaboration with ESO.

2 The team is composed of Eric Gendron, Athéna Coustenis, Pierre Drossart, Michel Combes, Mathieu Hirtzig, François Lacombe, Daniel Rouan, Claude Collin, and Sylvain Pau (LESIA, Observatoire de Paris, CNRS, France), Anne-Marie Lagrange, David Mouillet, Patrick Rabou (Laboratoire d’Astrophysique, Observatoire de Grenoble, France), Thierry Fusco (ONERA) and Gérard Zins (ESO).

Richard West | ESO
Further information:
http://www.eso.org/outreach/press-rel/pr-2004/phot-08-04.html

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>