Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists seek cause for what makes good cell go bad

01.04.2004


Genetic mutations - sudden, random and usually harmful changes to the structure of a gene - are only one factor that determines the ultimate fate of a cell. Chicago scientists have discovered that a non-genetic molecular process also can play a role, and that experimenters can influence this process in bacteria, they report in the April 1 issue of the journal Nature.



The research team, led by Philippe Cluzel, Assistant Professor in Physics at the University of Chicago, arrived at its finding by analyzing E. coli’s chemotaxis system, the system that transmits the biochemical signals responsible for cell locomotion.

"We studied this simple system in bacteria as a model system for the general study of signal transduction networks," Cluzel said. "Signal transduction networks are everywhere in nature. The division of our cells is controlled by a signal transduction network, and its malfunction causes cancers."


The network that controls the movement of E. coli, a single-celled organism, is much simpler than the system that divides human cells. But signal transduction networks exhibit the same design principles across species, Cluzel said. Consequently, researchers will now attempt to apply their research methods to higher organisms.

A combination of traditional genetic experiments and computer simulations contributed to the study. "The methods they’re using I think in many ways are the future of biology," said Michael North, deputy director of the Center for Complex Adaptive Systems Simulation at Argonne National Laboratory. North, who did not participate in the study but who is familiar with its findings, lauded Cluzel and his co-authors for their mathematical rigor and for pushing signal transduction research to new levels of volume and efficiency. "They were able to collect more data than anyone had in the past by a wide margin," North said.

Cluzel’s team focused its study on monitoring and analyzing the intracellular signals that control the bacterium’s flagella--its whip-like arms. The researchers found that they could affect how often the bacteria switched their direction of motion by altering the concentration of a key protein in its signal transduction network. Previous studies performed at the population level had concluded that the bacteria switched their direction at a steady rate. "We showed that at the single-cell level it was totally the other way around," Cluzel said. "Variability is a part of nature and this can be regulated."

Previous researchers had come to a different conclusion because they applied different statistical methods to their studies. Biologists usually average their data on the behavior of organisms because population statistics usually meet their experimental needs. But averaging eliminates much of the information scientists need to understand individual variability.

Like biologists, physicists also encounter widely fluctuating data in some of their experiments. This "noise" actually helps physicists determine the basic characteristics of conducting materials as electric signals travel through them. Similarly, Cluzel said, biological noise "can carry important information about the intracellular molecular mechanisms taking place within a cell."

In addition to carrying out experiments on E. coli’s transduction network, the researchers also reproduced its components in a computer simulation and obtained the same results. In future studies, the team will apply similar approaches to characterize the molecular origin of cell fate variability in higher organisms.

Cluzel and his research team display a wide range of scientific training. Cluzel received his Ph.D. in physics at the Institut Marie Curie in Paris, where both a physicist and a biologist served as dual advisers for his research. Cluzel later spent four years conducting research in a molecular biology laboratory at Princeton University. He now is a member of the Institute for Biophysical Dynamics, which fosters scientific collaborations between physical and biological scientists at the University.


Cluzel’s co-leading authors include Ekaterina Korobkova, a graduate student in chemistry, and Thierry Emonet, a Research Associate in the Institute for Biophysical Dynamics, both at the University of Chicago. Completing the team are Jose Vilar, a theoretical physicist at the Sloan Kettering Cancer Center in New York, and Thomas Shimizu, who does computer simulations of cells, of Keio University in Japan.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>