Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists see golden needle in a micro-cosmic haystack

24.03.2004


An international team of physicists examining an extremely rare form of subatomic particle decay -- a veritable golden needle in a micro-cosmic haystack of 7.8 trillion candidates -- has discovered evidence for the highly sought process, which could be an indication of new forces beyond those incorporated in the Standard Model of particle physics. That long-standing theory of all particle physics precisely predicts the rate of such decays to be half that observed by the experimenters although it is still too soon to say if a deviation has occurred. The innovative experiment, which uses the most comprehensive particle detector ever built, is located at the U.S. Department of Energy’s Brookhaven National Laboratory. The result is being presented at a colloquium at Brookhaven Lab today and has been submitted to Physical Review Letters.



The experiment detects the disintegration of an unstable subatomic particle called a K meson, which can decay, or break apart, in a variety of ways. One particular decay -- in which the K meson turns into other particles, a positively charged pion, a neutrino, and an antineutrino -- is extremely important due to the internal subatomic processes involved and its sensitivity to new physical effects not accounted for in the Standard Model. The decay is so rare that it was predicted to happen only once in all the decays ever observed by all of the experiments that have searched for it since the 1960s.

The latest evidence of the long-sought process was found in just-analyzed data. It followed two earlier sightings at Brookhaven in 1997 and 2002 (see: http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr011002.htm). The new data were obtained using improved apparatus that exploited higher beam intensities and achieved greater efficiency of detection than any previous experimental setup.


The current result indicates that this particular rare K meson decay occurs once in every 7 billion decays. The improved result continues to suggest a possible discrepancy with the Standard Model, although with only 3 events, the result is still consistent with this model’s prediction of one in 13 billion decays.

"It is very important to establish whether these first few events represent a statistical fluke or an important breakthrough," said Douglas Bryman, Professor of Physics at the University of British Columbia, one of the experiment’s spokespersons. "This can only be done with an enhanced event sample, which could be obtained by further running of the experiment. "Additional running would resolve the issue and firmly establish whether we are seeing an extremely significant departure from standard theory," Bryman said. Such further running would require program funding not presently planned.

The long trek leading to discovery

The experimental collaboration -- now composed of 70 scientists from Canada, Japan, Russia and the United States, (see: http://www.phy.bnl.gov/E949/, Collaboration List) -- has been conducting the search for the past decade at the Alternating Gradient Synchrotron, a particle accelerator at Brookhaven Lab that produces the world’s most intense beams of K mesons. K mesons are elusive particles that exist for only 12 billionths of a second before decaying into other forms. So, to catch the fleeting events and identify the rare decay, the scientists built a state-of-the-art particle detector the size of a small house, capable of examining 1.6 million decays every second. Interesting events get recorded on tape, with several tens of thousands of gigabytes of data stored so far. The physicists then use sophisticated software to pore over the data to find the most interesting events and examine them in exquisite detail.

Although a neutrino and an antineutrino are also emitted in this K meson decay, these particles interact too weakly to be detected. Thus, evidence that one positive pion -- and only a positive pion -- was produced by the K meson decay must be proven beyond a reasonable doubt, eliminating the possibility that other detectable particles are present. To establish the validity of the observations, the scientists must reject all background cases where a K meson decays in other ways, usually involving a charged particle or a neutral pion. In order to achieve the unprecedented level of filtering required, the group developed the most efficient particle detector system ever built.

The hard part here is that neutral pions immediately decay into two high-energy gamma rays (photons), and the experiment must not miss them more than once in every million decays. To do this, the detector stops the K mesons in their tracks -- in a scintillating fiber target -- before they decay. The decay products then travel through a particle-tracking chamber surrounded by a huge magnet and plastic scintillation counters, so their momentum, trajectories, and energy can be precisely measured to positively identify the types of particles detected. Events that emit photons are picked up by sensitive detectors and rejected, leaving only the rarest decays as candidates for the process the scientists are seeking.

Out of all the data analyzed, the scientists have now seen three events explicable by the rare K meson decay they’ve been searching for. Their goal is to increase the experimental exposure by five times. If their findings continue at the current pace, 20 or more events would be observed. Such a result could profoundly alter our current picture of particle physics, forcing an expanded view of the fundamental constituents of the universe and their interactions since the ’Big Bang.’


This research was funded by the Office of High-Energy Physics within the Department of Energy’s Office of Science, with additional support from the Natural Sciences and Engineering Research Council and the National Research Council of Canada, and through agreements with the Japanese and Russian governments to support research at Department of Energy facilities.

For technical background, go to: http://www.phy.bnl.gov/E949/

If you’d like a PDF version of this press release using the scientific characters, contact: kmcnulty@bnl.gov.

One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Karen McNulty Walsh | BNL
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2004/bnlpr032304b.htm
http://www.bnl.gov/newsroom

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>