Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST helps verify accuracy of the world’s best rulers

19.03.2004


Research paves the way to next generation of ’atomic clocks’



Three of the world’s premier measurement laboratories - including the Commerce Department’s National Institute of Standards and Technology (NIST) - have lined up the "hash marks" from four of the world’s best optical frequency rulers and declared that they match. The experiments, reported in the March 19, 2004, issue of the journal Science, are a significant step toward next-generation "atomic clocks" based on optical rather than microwave frequencies. Such clocks are expected to be as much as 100 times more accurate than today’s best timekeeping systems.

Applications for ultra-precise timekeeping include navigation, telecommunications and basic scientific research.


Optical "rulers" are lasers that emit pulses of light lasting just 10 femtoseconds (10 quadrillionths of a second, or 10 millionths of a billionth of a second). The experiments demonstrated that femtosecond laser devices could be used to reproducibly generate and accurately control the frequency of electromagnetic fields---a critical step in taking the measurement of time beyond its current accuracy level of about 0.1 nanosecond per day (i.e., losing or gaining no more than about 0.1 billionths of a second per day).

These devices are called "frequency combs" because a graph of the oscillating electromagnetic waves looks like the teeth of a hair comb. The output of these frequency combs can be used as a ruler for measuring time and frequency. For instance, a femtosecond frequency comb can reproducibly divide an interval of an hour into 10 quintillion (one followed by 19 zeroes) segments of equal time. The combs also could be used in making ultra-precise length measurements.

Until a few years ago, the femtosecond laser devices were the missing link in the engineering of optical atomic clocks. The world’s current best atomic clocks, such as the NIST-F1 laser-cooled cesium fountain clock, are based on microwave vibrations in atoms with a frequency of about 9 billion cycles per second. While this is very fast, electronic systems can accurately count these vibrations.

But no electronic systems exist that can directly count the optical oscillations in atoms such as calcium and mercury at about 500,000 billion cycles per second. A frequency comb, functioning like the electronics in a conventional clock, would be used to divide the very fast oscillations of future optical clocks into lower frequencies that can be linked to microwave standards such as NIST-F1 and compared to distribution systems such as the Global Positioning System (GPS) and broadcasts from NIST’s radio stations.

"These lasers are the gears of our next-generation clocks," says NIST physicist Scott Diddams, a co-author of the Science paper. "Our experiments made certain that the gears will run smoothly."

NIST physicists and collaborators compared the operation of four femtosecond laser systems of different designs--two systems built at NIST, one by the Bureau International des Poids et Mesures in France, and one by East China Normal University in Shanghai.

The team compared the devices in pairs, with reference to a third device arbitrarily chosen as a standard, on six days over a period of several months. The teeth of two combs were lined up and then a radio frequency "beating" technique--the optical equivalent of using a tuning fork to determine how closely a piano key is tuned to the correct note -– was used to check the exactness of the match.

The NIST experiments are the first to compare the operation of multiple femtosecond frequency combs---thereby demonstrating reproducibility---and to verify that both the starting position of a comb and the spacing between the teeth can be controlled precisely.

The lasers used in the experiments emit light across a broad frequency range, from the visible to near-infrared parts of the spectrum. This versatility enables scientists to design frequency combs with teeth that match various optical frequency standards now under development, which, in turn, allows much better performance and increases the likelihood of practical applications resulting from the technology. One key application would be optical clocks much more accurate than today’s best clocks, such as NIST-F1.

Femtosecond frequency combs could be used to make more accurate optical clocks that could help answer research questions such as whether fundamental physical constants---essential to many practical calculations made in science---have changed very slightly over billions of years. NIST scientists already have used optical clocks to set limits on changes in one fundamental constant (the "fine-structure" constant that describes the strength of the electromagnetic force). Further studies of this type could help develop a better understanding of the fundamental laws of nature.

Scientists from OFS Laboratories in New Jersey collaborated on the frequency comb comparisons with the team from NIST and the French and Chinese institutions.


As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

Ma, L.S.; Bi, Z.; Bartels, A.; Robertsson, L.; Zucco, M.; Windeler, R.S.; Wilpers, G.; Oates, C.; Hollberg, L.; and Diddams, S.A. "Optical Frequency Synthesis and Comparison with Uncertainty at the 10^-19 Level." Science 303, 5665: 1843-1845 (March 19, 2004).

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Physics and Astronomy:

nachricht Newly discovered adolescent star seen undergoing 'growth spurt'
19.12.2018 | University of Exeter

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>