Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Report Bubble Fusion Results Replicated

03.03.2004


Physical Review E publishes paper on fusion experiment conducted with upgraded measurement system



Physical Review E has announced the publication of an article by a team of researchers from Rensselaer Polytechnic Institute (RPI), Purdue University, Oak Ridge National Laboratory (ORNL), and the Russian Academy of Science (RAS) stating that they have replicated and extended previous experimental results that indicated the occurrence of nuclear fusion using a novel approach for plasma confinement.

This approach, called bubble fusion, and the new experimental results are being published in an extensively peer-reviewed article titled “Additional Evidence of Nuclear Emissions During Acoustic Cavitation,” which is scheduled to be posted on Physical Review E’s Web site and published in its journal this month.


The research team used a standing ultrasonic wave to help form and then implode the cavitation bubbles of deuterated acetone vapor. The oscillating sound waves caused the bubbles to expand and then violently collapse, creating strong compression shock waves around and inside the bubbles. Moving at about the speed of sound, the internal shock waves impacted at the center of the bubbles causing very high compression and accompanying temperatures of about 100 million Kelvin.

These new data were taken with an upgraded instrumentation system that allowed data acquisition over a much longer time than was possible in the team’s previous bubble fusion experiments. According to the new data, the observed neutron emission was several orders of magnitude greater than background and had extremely high statistical accuracy. Tritium, which also is produced during the fusion reactions, was measured and the amount produced was found to be consistent with the observed neutron production rate.

Earlier test data, which were reported in Science (Vol. 295, March 2002), indicated that nuclear fusion had occurred, but these data were questioned because they were taken with less precise instrumentation.

“These extensive new experiments have replicated and extended our earlier results and hopefully answer all of the previous questions surrounding our discovery,” said Richard T. Lahey Jr., the Edward E. Hood Professor of Engineering at Rensselaer and the director of the analytical part of the joint research project.

Other fusion techniques, such as those that use strong magnetic fields or lasers to contain the plasma, cannot easily achieve the necessary compression, Lahey said. In the approach to be published in Physical Review E, spherical compression of the plasma was achieved due to the inertia of the liquid surrounding the imploding bubbles.

Professor Lahey also explained that, unlike fission reactors, fusion does not produce a significant amount of radioactive waste products or decay heat. Tritium gas, a radioactive by-product of deuterium-deuterium bubble fusion, is actually a part of the fuel, which can be consumed in deuterium-tritium fusion reactions.

Researchers Rusi Taleyarkhan, Colin West, and Jae-Seon Cho conducted the bubble fusion experiments at ORNL. At Rensselaer and in Russia, Professors Lahey and Robert I. Nigmatulin performed the theoretical analysis of the bubble dynamics and predicted the shock-induced pressures, temperatures, and densities in the imploding vapor bubbles. Robert Block, professor emeritus of nuclear engineering at Rensselaer, helped to design, set up, and calibrate a state-of-the-art neutron and gamma ray detection system for the new experiments.

Special hydrodynamic shock codes have been developed in both Russia and at Rensselaer to support and interpret the ORNL experiments. These computer codes indicated that the peak gas temperatures and densities in the ORNL experiments were sufficiently high to create fusion reactions. Indeed, the theoretical shock code predictions of deuterium-deuterium (D-D) fusion were consistent with the ORNL data.

The research team leaders are all well known authorities in the fields of multiphase flow and heat transfer technology and nuclear engineering. Taleyarkhan, a fellow of the American Nuclear Society (ANS) and the program’s director, held the position of Distinguished Scientist at ORNL, and is currently the Ardent Bement Jr. Professor of Nuclear Engineering at Purdue University. Lahey is a fellow of both the ANS and the American Society of Mechanical Engineers (ASME), and is a member of the National Academy of Engineering (NAE). Nigmatulin is a visiting scholar at Rensselaer, a member of the Russian Duma, and the president of the Bashkortonstan branch of the Russian Academy of Sciences (RAS). Block is a fellow of the ANS and is the longtime director of the Gaerttner Linear Accelerator (LINAC) Laboratory at Rensselaer. The bubble fusion research program was supported by a grant from the Defense Advanced Research Projects Agency (DARPA).

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Theresa Bourgeois | Rensselaer Polytechnic Institute
Further information:
http://www.rpi.edu/web/News/press_releases/2004/lahey.htm

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>