Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Watch "Movie"Of Neutron Star Explosion In Real-Time

23.02.2004


Credit: NASA/Dana Berry


Credit: NASA/Dana Berry

Scientists at the Canadian Institute for Theoretical Astrophysics (CITA) and NASA have captured unprecedented details of the swirling flow of gas hovering just a few miles from the surface of a neutron star, itself a sphere only about ten miles across.

A massive and rare explosion on the surface of this neutron star - pouring out more energy in three hours than the Sun does in 100 years - illuminated the area and allowed the scientists to spy on details of the region never before revealed. They could see details as fine as the ring of gas swirling around and flowing onto the neutron star as this ring buckled from the explosion and then slowly recovered its original form after approximately 1,000 seconds.

All of this was occurring 25,000 light years from Earth, captured second-by-second in movie-like fashion through a process called spectroscopy with NASA’s Rossi X-ray Timing Explorer.

Dr. David Ballantyne of CITA at the University of Toronto and Dr. Tod Strohmayer of NASA’s Goddard Space Flight Center in Greenbelt, Md., present this result in an upcoming issue of Astrophysical Journal Letters. The observation provides new insight into the flow of a neutron star’s (and perhaps a black hole’s) "accretion disk," usually far too minute to resolve with even the most powerful telescopes.

"This is the first time we have been able to watch the inner regions of an accretion disk, in this case literally a few miles from the neutron star’s surface, change its structure in real-time," said Ballantyne. "Accretion disks are known to flow around many objects in the Universe, from newly forming stars to the giant black holes in distant quasars. Details of how such a disk flows could only be inferred up to now."

A neutron star is the dense, core remains of an exploded star at least eight times more massive than the Sun. The neutron star contains about a sun’s worth of mass packed in a sphere no larger than Toronto. An accretion disk refers to the flow of hot gas (plasma) swirling around neutron stars and black holes, attracted by the strong gravity of the region. This gas is often supplied by a neighboring star.

As matter crashes down on the neutron star it builds up a 10- to 100-meter layer of material comprised mostly of helium. The fusion of the helium into carbon and other heavier elements releases enormous energy and powers a strong burst of X-ray light, far more energetic than visible light. (Nuclear fusion is the same process that powers the Sun.) Such bursts can occur several times a day on a neutron star and last for about 10 seconds.

What Ballantyne and Strohmayer observed on this neutron star, named 4U 1820-30, was a "superburst". These are much more rare than ordinary, helium-powered bursts and release a thousand times more energy. Scientists say these superbursts are caused by a buildup of nuclear ash in the form of carbon from the helium fusion. Current thinking suggests that is takes several years for the carbon ash to buildup to such an extent that it begins to fuse.

The superburst was so bright and long that it acted like a spotlight beamed from the neutron star surface and onto the innermost region of the accretion disk. The X-ray light from the burst illuminated iron atoms in the accretion disk, a process called fluorescence. The Rossi Explorer captured the characteristic signature of the iron fluorescence -- that is, its spectrum. This, in turn, provided information about the iron’s temperature, velocity and location around the neutron star.

"The Rossi Explorer can get a good measurement of the fluorescence spectrum of the iron atoms every few seconds," Strohmayer said. "Adding up all this information, we get a picture of how this accretion disk is being deformed by the thermonuclear blast. This is the best look we can hope to get, because the resolution needed to actually see this action as an image, instead of spectra, would be a billion times greater than what the Hubble Space Telescope offers."

The scientists said the bursting neutron stars serve as a laboratory to study accretion disks, which are seen (but in less detail) through the Universe around nearby stellar black holes and exceedingly distant quasar galaxies. Stellar black holes with accretion disks do not produce X-ray bursts.

The Rossi Explorer was launched in December 1995 to observe fast-changing, energetic and rapidly spinning objects, such as supermassive black holes, active galactic nuclei, neutron stars and millisecond pulsars.

Nicolle Wahl | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/

More articles from Physics and Astronomy:

nachricht On Mars, sands shift to a different drum
24.05.2019 | University of Arizona

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>