Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Etching holes in vertical-cavity surface-emitting lasers creates better beam

11.02.2004


Researchers at the University of Illinois at Urbana-Champaign have found a way to significantly improve the performance of vertical-cavity surface-emitting lasers by drilling holes in their surfaces. Faster and cheaper long-haul optical communication systems, as well as photonic integrated circuits, could be the result.



Low-cost VCSELs are currently used in data communication applications where beam quality is of little importance. To operate at higher speeds and over longer distances, the devices must function in a single transverse mode with a carefully controlled beam.

"These characteristics are normally found only in very expensive lasers, not in mass-produced VCSELs," said Kent D. Choquette, an Illinois professor of electrical and computer engineering and a researcher at the university’s Micro and Nanotechnology Laboratory. "By embedding a two-dimensional photonic crystal into the top face of a VCSEL, however, we can accurately design and control the device’s mode characteristics."


Choquette and his colleagues -- Illinois graduate students Aaron J. Danner and James J. Raftery Jr., and scientist Noriyuki Yokouchi at the Furukawa Electric Co. in Yokohama, Japan -- will report their findings in the Feb. 16 issue of the journal Applied Physics Letters.

The two-dimensional photonic crystal, created by drilling holes in the semiconductor surface, introduces a periodic change in the index of refraction, Choquette said. The holes represent regions of low refractive index, surrounded by semiconductor material where the index is higher. A particular combination of refractive indices will produce a single-mode waveguide that permits only one transverse wave of the laser beam to propagate.

"Our photonic crystal consists of a triangular array of circular holes that have been etched into the top of a VCSEL," Choquette said. "Because the index variation has to be on the length scale of light, the periodicity of the holes must be on the order of several hundred nanometers."

To create such a precise array of holes, the researchers first lithographically define the desired pattern into a silicon dioxide mask layer on the semiconductor surface using focused-ion beam etching. The holes are then bored into the semiconductor material using inductively coupled plasma etching.

"By selectively varying parameters such as depth, diameter and spacing of the holes, we can control the modal characteristics of the laser," Choquette said. "This means we can accurately design and fabricate single-mode VCSELs for high-performance optical communication systems."

The next step, he said, is to push VCSEL performance toward higher power by considering designs that are much larger in diameter.

"Looking beyond that, we also have fundamental problems with high-speed data communication on our circuit boards and in our chips," Choquette said. "This is a technology that could serve as the foundation for a new way of looking at optical interconnects and photonic integrated circuits."


###
The National Science Foundation and Defense Advanced Research Projects Agency funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0210crystals.html

More articles from Physics and Astronomy:

nachricht Original kilogram replaced -- new International System of Units (SI) entered into force
22.05.2019 | Forschungsverbund Berlin

nachricht Stellar waltz with dramatic ending
22.05.2019 | University of Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>