Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK astronomers take control of the time domain

09.02.2004


Although there are numerous telescopes – both large and small – examining the night sky at any one time, the heavens are so vast and so densely populated with all manner of exotic objects that it is extremely easy to overlook a significant random event. Fortunately, a new generation of scientific instruments is now enabling UK astronomers to prepare for the unexpected and become leaders in so-called “Time Domain Astrophysics”.



Exciting new observations of many different, time-variable celestial objects, ranging from black hole X-ray binaries to flare stars and Saturn’s moon Titan will be presented at a Royal Astronomical Society Specialist Discussion Meeting on Friday, 13 February (details below). The meeting will also feature presentations on several ground-breaking UK instruments which make these observations possible.

The Universe around us is constantly changing. Sometimes, the map of the heavens is rewritten by sudden, violent events such as gamma ray bursts (GRBs) and supernovae. Sometimes, a wandering near-Earth asteroid or a gravitational lensing event makes its unpredictable appearance. Most frequently, a star will undergo a modest fluctuation in optical brightness or energy output.


Observing such apparitions and variations can unlock the secrets of a wide variety of the most intriguing and important astronomical objects. Unfortunately, it has proved surprisingly difficult to undertake the type of observations that are required using conventional telescopes and their instruments to solve many outstanding puzzles.

In order to understand these types of phenomena, it is necessary to conduct long term monitoring programmes or to be able to react within minutes to chance discoveries made by other observatories or spacecraft.

“A new generation of facilities, designed and built in the UK, is poised to give the nation’s astronomers a world-leading position in what is dubbed the ‘Time Domain’,” said Professor Mike Bode of Liverpool John Moores University, co-organiser with Professor Phil Charles (Southampton University) of the Royal Astronomical Society meeting about the latest technological breakthroughs in observational astronomy.

This new generation includes the "ULTRACAM" high speed camera, which is being used on various front-rank telescopes around the world. A collaboration between Sheffield and Warwick Universities and the Astronomy Technology Centre, Edinburgh, ULTRACAM can observe changes in brightness lasting only a few thousandths of a second. It has been used to explore the environments of objects as diverse as the atmosphere of Saturn’s smog-shrouded moon, Titan, to the last gasps of gas spiralling into black holes.

Another pioneering instrument is “Super WASP”, a novel telescope comprising effectively five wide-angle cameras. Led by astronomers from a consortium of UK universities, including Queens Belfast, Cambridge, Leicester, Open, and St Andrews, as well as the Isaac Newton Group on La Palma in the Canary Islands, the first Super WASP began operations on La Palma in November 2003.

With its very wide field of view, the telescope can image at any one time an area of sky equivalent to around 1,000 times that of the full Moon. In this way, it is able to observe hundreds of thousands of stars per night, looking for changes in brightness, and discovering new objects. In particular, Super WASP will play a key role in the search for planets in other star systems as they cross the face of their parent star and the flashes of light that may accompany the most dramatic, and enigmatic, explosions since the Big Bang - the so-called Gamma Ray Bursters. In the course of its work, Super WASP will also discover countless asteroids in our own Solar System.

The third of the new facilities is the Liverpool Telescope (LT) on La Palma, pioneering the next-generation robotic telescopes that is being built in Birkenhead by Telescope Technologies Ltd. With its 2m (6.6ft) diameter main mirror, which makes it the largest robotic telescope dedicated to research ever built, the LT started science operations in January 2004. It is owned and operated as a "space probe on the ground" by Liverpool John Moores University (JMU), and supported by funding from JMU, the Particle Physics and Astronomy Research Council, the European Union, the Higher Education Funding Council and the generous benefaction of Mr Aldham Robarts.

Although only operational for just under a month, the LT has already observed a wide range of objects from comets and asteroids, through exploding stars (novae and supernovae) to the variations in light of the centres of active galaxies where it is thought that supermassive black holes may be lurking.

The RAS meeting will also be presented with a vision of the future in which a network of giant robotic telescopes like the LT would be sited around the globe. This robotic telescope network ("RoboNet") would act as a single, fast-reacting telescope, able to observe objects anywhere on the sky at any time and to follow them 24 hours a day if necessary.

Taking advantage of developments in internet technology, the network will be automatically and intelligently controlled by software developed by the e-STAR project (a collaboration between Exeter University and JMU). e-STAR links the telescopes via "intelligent agents" directly to archives and databases, so that follow-up observations of objects that are seen to vary can automatically be undertaken without human intervention.

Plans are already being considered for a prototype RoboNet based around the LT and its (primarily educational) clones, the Faulkes Telescopes, in Hawaii and Australia. This would lead next to the establishment of a dedicated network in the southern hemisphere searching for planets around other stars. The REX (the Robotic Exo-planet discovery network) project, led by the University of St Andrews, holds out the best prospects for the detection of Earth-like planets around other stars prior to the launch of vastly more expensive space-based observatories in the next decade.

Prof. Mike Bode | alfa
Further information:
http://www.shef.ac.uk/physics/people/vdhillon/ultracam/
http://www.superwasp.org/news.html
http://telescope.livjm.ac.uk/

More articles from Physics and Astronomy:

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

nachricht 10,000 times faster calculations of many-body quantum dynamics possible
21.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

A genetic map for maize

24.02.2020 | Agricultural and Forestry Science

Where is the greatest risk to our mineral resource supplies?

24.02.2020 | Earth Sciences

Computer vision is used for boosting pest control efficacy via sterile insect technique

24.02.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>