Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dazzling Halos illuminate our dusty Galaxy

26.01.2004


The discovery of a unique phenomenon: a beautiful set of expanding X-ray halos surrounding a gamma-ray burst which have never been seen before, (see Movie link at end), has been announced by an international team of astronomers led by Dr Simon Vaughan of the University of Leicester. The research has been accepted for publication in the Astrophysical Journal.



Gamma-ray bursts (GRB) are the most energetic form of radiation in the Universe and can be used to probe any material between Earth and the burst. In this case, the GRB lies behind the plane of our Galaxy, so its light has to travel through the gas and dust in the Galactic disc to reach us.

ESA’s gamma ray observatory satellite ’Integral’ detected the 30 second long GRB 031203 on December 3rd 2003 and the halos were discovered in a follow-up observation that started 6 hours after the burst with ESA’s ’XMM-Newton’ X-ray space telescope.


Commenting on the discovery, Professor Ian Halliday, Chief Executive of the UK’s Particle Physics and Astronomy Research Council (PPARC) said “Gamma-ray bursts are the most violent events in the Universe. Unlike the serene beauty of the stars that we can see with our eyes, the Gamma Ray Universe is a place of dramatic explosions, cosmic collisions and matter being sucked into black holes.”

Halliday added “This is a wonderful example of two of ESA’s most advanced observatories in which UK scientists have made a significant contribution, working in harmony to reveal a new level of scientific understanding.”

The fading X-ray emission from the GRB - the afterglow - is clearly seen in the image from the X-ray cameras on XMM-Newton. Uniquely, two rings centred on the afterglow were also seen. Dr Vaughan said "These rings are due to dust in our own Galaxy which is illuminated by the X-rays from the gamma-ray burst. The dust scatters some of the X-rays causing the rings, in the same way as fog scatters the light from a car’s headlights." He added "It’s like a shout in a cathedral; the shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is more beautiful."

Due to the finite speed of light, X-rays from more distant dust reach us later, giving rise to the appearance of expanding rings. Dr Vaughan said "We expect to see an expanding ring on the sky if the dust is in a sheet roughly in the plane of the sky, but as we see two rings there must be two dust sheets between us and the GRB. Understanding how dust is distributed in our Galaxy is important. Dust helps cool gas clouds which can then collapse to form stars and planets. Knowing where dust is located helps astronomers determine where star and planet formation is likely to occur."

Expanding X-ray dust scattering rings have never been seen before. Slower moving rings seen in visible light around a very few supernovae are caused by a similar effect.

The two halos are due to thin sheets of dust at 2,900 and 4,500 light-years away; the astronomers accurately measured the distances from the expansion rate of the halos. The distances have an uncertainty of just 2%, a remarkable level of accuracy for an object in our Galaxy. The nearest dust sheet is probably part of the Gum nebula, a bubble of hot gas resulting from many supernova explosions. The GRB itself is thought to have occurred in a small galaxy about a billion light-years away (one of the closest GRB galaxies).

Astronomers are still trying to understand the mysterious gamma-ray bursts. Some occur with the supernova explosion of a massive star when it has used up all of its fuel, although only stars which have lost their outer layers and which collapse to make a black hole seem able to make a GRB.

Today Integral and XMM-Newton provide astronomers with their most powerful facilities for studying gamma-ray bursts, but 2004 will see the launch of "Swift", a new NASA mission with major UK involvement, which will be dedicated to GRBs. This will work in concert with the two ESA satellite observatories, providing more opportunities for discoveries in this cutting edge field. UK participation in Integral, XMM-Newton and Swift is funded by the Particle Physics and Astronomy Research Council.

Julia Maddock | PPARC
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>