Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A technological breakthrough for radio astronomy - Astronomical observations via high-speed data link

26.01.2004


To carry out simultaneuos observations with several telescopes and transform the combined data into pictures from distant galaxies has so far been a cumbersome procedure which often has taken a long time.



Now a breakthrough has been achieved by way of the installation of optical fibre links between the observatories and the universities who have access to the national and international research networks.

On Thursday 15 January 2004, the first e-VLBI experiment took place between Onsala Space Observatory and radio telescopes in Westerbork, Holland, and Cambridge, England. Data from all three telescopes were sent via gigabit networks to the correlator in Holland (Joint Institute for VLBI in Europe, JIVE), and already the next day an image
was produced of the distant galactic nucleus one had observed. The participants in the experiment agree that this technical development will revolutionize the whole research area.



Thanks to the new optical fibre link between Onsala and Chalmers, which was installed at the end of 2003, Onsala Space Observatory is one of the first observatories in Europe to be able to participate in this kind of observations.

Michael Olberg | alfa
Further information:
http://chalmersnyheter.chalmers.se/Article.jsp?article=2742

More articles from Physics and Astronomy:

nachricht The surprising environment of an enigmatic neutron star
18.09.2018 | Penn State

nachricht 'Optical rocket' created with intense laser light
17.09.2018 | University of Nebraska-Lincoln

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

Novel carbon source sustains deep-sea microorganism communities

18.09.2018 | Life Sciences

New insights into DNA phase separation

18.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>