Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Pentaquark: The Strongest Confirmation to Date

26.01.2004


An international team of physicists has provided the best evidence to date of the existence of a new form of atomic matter, dubbed the “pentaquark.” The research team confirmed the existence of pentaquarks by using a different approach that greatly increased the rate of detection compared to previous experiments. The results are published as the cover story in today’s issue of the journal Physical Review Letters.



“The latest, and most conclusive evidence of this five-quark particle — the ‘pentaquark’ — could bring immense insight in understanding the laws and structure of universal matter in its most fundamental form,” said lead author Valery Kubarovsky, a Research Scientist at Rensselaer Polytechnic Institute in Troy, N.Y.

The research was carried out at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) by the CLAS (CEBEF Large Acceptance Spectrometer) collaboration, which consists of physicists from universities and laboratories in seven nations.


Nearly all matter on Earth is held in the nuclei of atoms. An atomic nucleus is composed of protons and neutrons, with the number of protons determining the chemical element. In the last four decades, physicists have discovered that these subatomic particles are composed of even smaller particles, called quarks, which are held together by a strong nuclear force called “glue.” Each proton and neutron is composed of three quarks, for example.

For years, scientists have predicted that five-quark particles also could exist under unusual conditions. Yet, no proof surfaced until late 2002 when a Japanese team announced its discovery of the pentaquark in particle-smashing experiments. When the researchers zapped carbon atoms with high-energy gamma rays, they observed that, after gamma ray photons “crashed” into the neutrons, a few neutrons “grew” into five-quark particles. The Jefferson Lab team then corroborated this finding using a deuteron target.

The team announced the initial discovery of a pentaquark on a proton target at an international physics conference in New York City in May 2003. The findings were soon corroborated by researchers at Bonn University in Germany. Kubarovsky presented the CLAS team’s results at the first conference on pentaquarks, hosted by Jefferson Lab in November 2003.

Still, the results of subsequent experiments by researchers globally have been mixed until now.

“Detection is difficult because we are unable to ‘see’ the pentaquark itself, which lives less than one hundredth of a billionth of a billionth of a second, before decaying into two separate particles,” said Paul Stoler, Rensselaer physics professor and chair of the Jefferson Lab Users Board of Directors. “But even the two-particle, tell-tale sign is difficult to detect because of the many irrelevant reactions, or ‘debris,’ that also occur in the same experiments.”

To limit the debris, CLAS team members searched for a simpler mode of production. Since they could not isolate a single neutron — stable neutrons cannot exist freely — they turned to the single proton as a target.

One proton makes up the entire nucleus of the simplest element known in the universe: hydrogen. In the experiment, the Jefferson Lab team liquefied the hydrogen at a temperature that reached a few degrees above absolute zero before zapping the element with gamma rays.

“Shifting our focus from neutrons to protons dramatically altered our results,” Kubarovsky said. “We strongly increased the previous success rates for detecting pentaquarks.”

According to CLAS researchers, further experimentation is needed to increase the pentaquark detection rate per particle explosion, to better understand the details of how the pentaquark is produced, and its internal characteristics. Several follow-up experiments will be conducted at Jefferson Lab within the next year.

“Consider that, out of several billion collisions, scientists have found a few dozen pentaquarks. We need to find at least a thousand events that result in the creation of pentaquarks to have more valuable information on the nature of this new state of matter,” Kubarovsky says. “Right now we have a sample of about 45, which is the most significant in the world.”

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Jodi Ackerman | Rensselaer PI
Further information:
http://www.rpi.edu/web/News/press_releases/2004/pentaquark.htm

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>