Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extremely cold molecules created by Sandia and Columbia University researchers

15.12.2003


Dave Chandler aligns mirrors used to direct laser beams into an apparatus that generates very cold molecules and measures their velocity.
Credit: Sandia Corporation


Colors of the ball indicate the number of molecules at a given velocity. The bright spot at the top of the image represents molecules moving with less than 15 M/Sec, with the intensity of the spot proportional to the number moving that slowly. The density of slow molecules is approximately 108 molecules per cm3.
Credit: Sandia Corporation


Using a method usually more suitable to billiards than atomic physics, researchers from Sandia National Laboratories and Columbia University have created extremely cold molecules that could be used as the first step in creating Bose-Einstein molecular condensates. The work is published in the Dec. 12 Science.

The serendipitous achievement came when researchers at Sandia’s Livermore, Calif., and Columbia University, studying collisional energy transfer between a beam of atoms intersecting a beam of molecules, noted that a certain number of collisions occurred -- as they might between two billiard balls -- at exactly the right velocity for molecules to become motionless.

A motionless molecule is a cold molecule, according to laws of physics.



The study had led to a new technique for cooling molecules to millikelvin (a thousandth of a degree Kelvin above absolute zero) temperatures -- a first crucial step toward molecular ultra-coldness.

Though they were experts in neither cold molecules nor cold atoms, the researchers knew that atoms cooled to the nanokelvin (a billionth of a degree Kelvin) temperature range had been achieved several years ago with interesting basic-science results.

One product of the study of cold atoms is a new state of matter called a Bose-Einstein condensate. Certain atoms, bosons, can condense at a very low temperature and act as a single atom -- a fact which some researchers claim may lead to as many new developments as the first laser, originally only a scientific curiousity.

"Our technique has promise to be developed into a first step in the cooling process needed for a molecular Bose-Einstein condensate," says Sandia researcher and principal investigator Dave Chandler. The work is co-authored by Sandia post-doc Mike Elioff and James Valentini of Columbia University.

Very cold atoms and molecules may one day be used as individual yes/no switches (called Q-bits) in computers whose power our present-day imaginations are only beginning to grasp as well as precision gravity detectors that could perhaps locate underground caverns, says Chandler.

The main method used to achieve atomic ultra-cooling to the microkelvin temperature range -- the same preliminary cooling range as the Sandia technique -- makes use of laser beams that intersect at a point. An atom, possessing the appropriate absorption characteristics, passing through that point in effect stands still, like a kid in a dodge-ball game struck from all sides with balls. Transfixed by pressure from the beams, the atom becomes almost motionless.

The problem in cooling molecules by the laser method is that while some atoms possess characteristics that can be harmonically matched by a laser frequency, like the same note played by two pianos, molecular energy frequencies are more complex. This complexity makes them unsuitable for this type of laser cooling.

This leaves the field open for other techniques to be developed for the preliminary cooling of molecules. There have been four or five other techniques, published recently, that have had some level of success at cooling molecules. The most successful method to date has been the welding of ultracold atoms together to make ultracold molecules.

"Our atomic/molecular beam intersection method is inefficient, it’s true," says Chandler. "We only manage to cool one molecule in a million. But -- inefficient or efficient -- we generate cold molecules. With some improvements, we hope to be able to make substantial numbers of cold molecules."

Molecules are cheap, he says, so getting one in a million (1 in 106) cooling collisions out of the 1015 total collisions per second the molecules undergo in the beams doesn’t bother him.

This first-step method -- the only one to rely solely on the masses of the atoms and molecules involved -- could be useful in slowing down the speed of a variety of molecules sufficiently such that magnetic or electrical traps can be used to cool molecules further. Without prior slow-down, molecules would escape these relatively weak traps, like molecules of water rising from the surface of the hot coffee. Cold coffee evaporates fewer molecules.

Instruments in Chandler’s lab, working at their resolution limit, show selected molecules in the intersecting beams slowing from 600 meters/sec to 15 meters/sec. The group’s calculations indicate the speed to be on the order of 4 meters/sec. This average speed for the molecules is equivalent to a temperature on the tens of milliKelvin level -- that is, several thousandths of a degree above the universe’s absolute zero of -273 Celsius.

The last ninety nine yards, so to speak, are the hardest: Bose-Einstein condensates exist in the nanokelvin range, six orders of magnitude colder.


The basic-science work, funded by DOE’s Basic Energy Sciences, focuses on understanding how energy flows between molecules for a better understanding of heat transfer.


Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia media contact:
Neal Singer, nsinger@sandia.gov, 505-845-7078

Neal Singer | Sandia Corporation
Further information:
http://www.sandia.gov/news-center/news-releases/2003/physics-astron/cold.html
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>