Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern University physicists become first to demonstrate flat lens imaging

02.12.2003


Researchers at Northeastern University today announced that they have been able to demonstrate the unique feature of imaging through a flat lens. Using the phenomenon of negative refraction through a novel photonic crystal, Northeastern physicists observed that a flat slab of such material behaves as a lens and focuses electromagnetic waves at microwave frequencies to produce a real image.



The research, published in tomorrow’s edition of the journal Nature, represents an important advance in the field of imaging. The lead author on the article, “Imaging by Flat Lens Using Negative Refraction,” is Srinivas Sridhar, Ph.D., from the department of physics and the Electronic Materials Institute at Northeastern. Contributors also include NU researchers Patanjali Parimi, Ph.D., Wentao Lu, Ph.D., and Plarenta Vodo.

"The significance of this research is that, for the first time, we have been able to image using a flat surface by employing a special material fabricated from a photonic crystal, which possesses a negative index of refraction,” said Sridhar. “Conventional materials, like glass or Teflon, possess positive indices of refraction and, in order to focus light or microwaves with them, you need to have a curved surface. When the concept of negative refraction emerged about 30 years ago, its most striking proposal was the notion that you could form an image using flat rather than curved surfaces. This research not only demonstrated this to be true but is a significant achievement toward the realization of several applications in imaging such as the concept of a ‘superlens’ with vastly improved power of resolution. ”


In the study, the researchers sought to expand upon a recent observation that in certain composite metamaterials, electromagnetic waves bend negatively. The key advance of the new research lies in the design of a new photonic crystal which is an artificial structure usually made out of dielectric or metal designed to control photons in a manner similar to the way a solid crystal controls electrons. Using a photonic crystal with suitable dispersion characteristics, in this case, an array of alumina rods, the researchers were able to achieve negative refraction at microwave frequencies.

This ability to demonstrate negative bending is significant because it allows considerable control over electromagnetic wave propagation, which could lead to new approaches to a variety of applications from microwave and optical frequencies. Some of the immediate applications of these negative index materials (also known as left-handed materials) are: sub-wavelength imaging by flat lenses, scanning photon tunneling microscopy, ultra high sensitive phase shifters, leaky wave antennas and optical switches based on negative refraction. Negative index materials could eventually be used to build new components for optical and microwave telecommunications equipment.

"The advantages of focusing by flat lenses are many,” said Sridhar. “Conventional optical systems have a single optical axis and limited aperture, both due to curved surfaces, and cannot focus light onto an area smaller than a square wavelength. In contrast, the present flat lens does not have a unique optical axis and is not restricted by the aperture size. One of the challenges of this knowledge will be trying to apply it to optical frequencies, which will require fabricating material using nanotechnology. We could potentially see a more immediate impact in the development of microwave antennas and other communications devices.”

Further information regarding negative refractive index materials and flat lens imaging can be found at the group website: sagar.physics.neu.edu. For a complete copy of the report, please call 617-373-7274.

Northeastern University, located in the heart of Boston, Massachusetts, is a world leader in cooperative education and recognized for its expert faculty and first-rate academic and research facilities. Through co-op, Northeastern undergraduates alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, giving them nearly two years of professional experience upon graduation. The majority of Northeastern graduates receive a job offer from a co-op employer. Cited for excellence two years running by U.S. News & World Report, Northeastern was named a top college in the northeast by the Princeton Review 2003/04. In addition, Northeastern’s career services was awarded top honors by Kaplan Newsweek’s “Unofficial Insiders Guide to the 320 Most Interesting Colleges and Universities,” 2003 edition. For more information, please visit www.northeastern.edu.

Steve Sylven | Northeastern University
Further information:
http://www.nupr.neu.edu/11-03/nature.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>