Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Little Chaos May Go a Long Way in Future Fusion Energy Reactors

28.10.2003


45th Annual Meeting of the Division of Plasma Physics


Application of ergodic magnetic field suppresses ELMs.



In work that makes practical, large-scale fusion energy production increasingly feasible, plasma physicists working at DOE’s DIII-D National Fusion Facility in San Diego are using a little chaos to prevent precious energy from escaping fusion energy devices.

In a magnetic fusion device, or tokamak, one of the most crucial regions for reducing the loss of heat and particles is at the plasma region’s edge. Particle crossing this edge leave the plasma, and carry energy with them, degrading the fusion reactor’s walls, and making it harder for the desired fusion energy production to occur. This problem will only increase for next-generation fusion energy machines such as the proposed ITER facility.


As the energy content of the fusion fuel increases, plasma in the edges has a tendency to become unstable, exhibiting a kind of turbulence that physicists call "Edge Localized Modes", commonly referred to as ELMs. In experiments presented this week, an international team of researchers applied chaotic magnetic fields, in which the field lines point in unpredictable directions, to a small edge region of the plasma in the DIII-D experiment. With the chaotic magnetic field they applied, the researchers significantly reduced the ELM instabilities in the DIII-D plasma, enabling more heat to stay trapped in the fusion fuel and preserving the favorable conditions that allow fusion energy production to occur. Assuming that this approach can be extended to next-step fusion energy devices, it holds the promise of increasing the lives of materials that make up fusion-energy device walls without degrading the performance of the plasma fuel.

Contacts
T. E. Evans, General Atomics, 505-842-1234, evans@fusion.gat.com
T. S. Taylor, General Atomics, taylor@fusion.gat.com
Paul Thomas, CEA, France, paul.richard.thomas@gat.com

David Harris | American Physical Society
Further information:
http://www.aps.org/meet/DPP03/baps/abs/S1880037.html
http://www.aps.org/meet/DPP03/baps/abs/S1880038.html
http://gk.umd.edu/DPP/press2.html

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Scientists propose new theory on Alzheimer's, amyloid connection

23.04.2019 | Life Sciences

Research on TGN1412 – Fc:Fcγ receptor interaction: Strong binding does not mean strong effect

23.04.2019 | Life Sciences

Bacteria use their enemy -- phage -- for 'self-recognition'

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>