Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Largest Air Shower Array Now On Track Of Super-High-Energy Cosmic Rays

23.10.2003


The Pierre Auger Observatory is located in the Pampa Amarilla, or Yellow Pampa, an area 600 miles west of Buenos Aires, near the town of Malargüe. When complete, 1,600 surface detectors, spaced a mile apart, will cover an area of the size of Rhode Island.


Pierre Auger Observatory seeks source of highest-energy extra-terrestrial particles

With the completion of its hundredth surface detector, the Pierre Auger Observatory, under construction in Argentina, this week became the largest cosmic-ray air shower array in the world. Managed by scientists at the Department of Energy’s Fermi National Accelerator Laboratory, the Pierre Auger project so far encompasses a 70-square-mile array of detectors that are tracking the most violent-and perhaps most puzzling- processes in the entire universe.

Cosmic rays are extraterrestrial particles-usually protons or heavier ions-that hit the Earth’s atmosphere and create cascades of secondary particles. While cosmic rays approach the earth at a range of energies, scientists long believed that their energy could not exceed 1020 electron volts, some 100 million times the proton energy achievable in Fermilab’s Tevatron, the most powerful particle accelerator in the world. But recent experiments in Japan and Utah have detected a few such ultrahigh energy cosmic rays, raising questions about what extraordinary events in the universe could have produced them.



"How does nature create the conditions to accelerate a tiny particle to such an energy?" asked Alan Watson, physics professor at the University of Leeds, UK, and spokesperson for the Pierre Auger collaboration of 250 scientists from 14 countries. "Tracking these ultrahigh-energy particles back to their sources will answer that question."

Scientific theory can account for the sources of low- and medium-energy cosmic rays, but the origin of these rare high-energy cosmic rays remains a mystery. To identify the cosmic mechanisms that produce microscopic particles at macroscopic energy, the Pierre Auger collaboration is installing an array that will ultimately comprise 1,600 surface detectors in an area of the Argentine Pampa Amarilla the size of Rhode Island, near the town of Malargüe, about 600 miles west of Buenos Aires. The first 100 detectors are already surveying the southern sky.

"These highest-energy cosmic rays are messengers from the extreme universe," said Nobel Prize winner Jim Cronin, of the University of Chicago, who conceived the Auger experiment together with Watson. "They represent a great opportunity for discoveries."

The highest-energy cosmic rays are extremely rare, hitting the Earth’s atmosphere about once per year per square mile. When complete in 2005, the Pierre Auger observatory will cover approximately 1,200 square miles (3,000 square kilometers), allowing scientists to catch many of these events.

"Our experiment will pick up where the AGASA experiment has left off," said project manager Paul Mantsch, Fermilab, referring to the Akeno Giant Air Shower Array (AGASA) experiment in Japan. "At highest energies, the astonishing results from the two largest cosmic-ray experiments appear to be in conflict. AGASA sees more events than the HiRes experiment in Utah, but the statistics of both experiments are limited."

The Pierre Auger project, named after the pioneering French physicist who first observed extended air showers in 1938, combines the detection methods used in the Japanese and Utah experiments. Surface detectors are spaced one mile apart. Each surface unit consists of a 4-foot-high cylindrical tank filled with 3,000 gallons of pure water, a solar panel, and an antenna for wireless transmission of data. Sensors register the invisible particle avalanches, triggered at an altitude of six to twelve miles just microseconds earlier, as they reach the ground. The particle showers strike several tanks almost simultaneously.

In addition to the tanks, the new observatory will feature 24 HiRes-type fluorescence telescopes that can pick up the faint ultraviolet glow emitted by air showers in mid-air. The fluorescence telescopes, which can only be operated during dark, moonless nights, are sensitive enough to pick up the light emitted by a 4-watt lamp traveling six miles away at almost the speed of light.

"It is a really beautiful thing that we have a hybrid system," said Watson. "We can look at air showers in two modes. We can measure their energy in two independent ways."

Alan Watson | alfa
Further information:
http://www.fnal.gov/pub/presspass/press_releases/auger_photos/index.html
http://www.auger.org/

More articles from Physics and Astronomy:

nachricht Heading towards a tsunami of light
19.03.2019 | Chalmers University of Technology

nachricht Long-distance quantum information exchange -- success at the nanoscale
18.03.2019 | University of Copenhagen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Heading towards a tsunami of light

19.03.2019 | Physics and Astronomy

Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry

19.03.2019 | Life Sciences

From foam to bone: Plant cellulose can pave the way for healthy bone implants

19.03.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>