Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists discover massive forming galaxies

18.09.2003


A Lawrence Livermore National Laboratory astrophysicist, in collaboration with international researchers, has found evidence for the synchronous formation of massive, luminous elliptical galaxies in young galaxy clusters.



The forming galaxies were detected at sub-millimeter wavelengths. Emission at these wavelengths is due to dust from young stars that is heated by the stars or by active black holes. The galaxies were grouped around high-red shift radio galaxies, the most massive systems known, suggesting that they all formed at approximately the same time.

In the present universe, the most massive galaxies are elliptical galaxies, which are found in the centers of rich galaxy clusters. The stars in these galaxies are now old, and must have formed at much earlier times. The enormous bursts of star formation that build these galaxies produce large quantities of dust that can be observed at submillimeter wavelengths.


Wil van Breugel, of Livermore’s Institute of Geophysics and Planetary Physics, along with scientists from the University of Edinburgh, the University of Durham, Instituto Nacional de Astrofiscia and Leiden Observatory in The Netherlands, present their research, "The Formation of Cluster Elliptical Galaxies as Revealed by Extensive Star Formation," in the Sept. 18 edition of Nature.

Earlier sub-millimeter studies of high-red shift radio galaxies have shown that their star-formation rates are large enough to build a massive galaxy. However, that research provided no information on the spatial extent of the emission or on the star-formation in their environments. By mapping seven objects with varying red shifts, the team was able to illustrate the distribution of dust-reradiated emission in and around the radio galaxies.

"One of the most striking aspects of these maps is that we can see that the dust emission from the central radio galaxy is very extended, the size of many times the diameter of our own galaxy," van Breugel said. "But even more interesting is that we also found other massive forming galaxies near these radio galaxies, suggesting that they all started their formation at approximately the same time." Models of galaxy formation show that the most massive galaxies form in overdense regions that then form clusters of galaxies.

The discovery of groups of luminous, dusty galaxies at high red shift suggests that the scientists may have witnessed this process for the first time.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>