Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists determine large magellanic cloud galaxy formed similar to Milky Way

12.09.2003


An astronomer from the Lawrence Livermore National Laboratory, in collaboration with an international team of researchers, have discovered that a neighboring galaxy -- the Large Magellanic Cloud (LMC) -- appears to have formed with an old stellar halo, similar to how our very own Milky Way formed.



The oldest and most metal-poor Milky Way stars form a spherical halo where they move about like atoms in a hot gas, which in turn prompts two major formation scenarios of our galaxy: extended hierarchical accretion and rapid collapse. RR Lyrae stars, which are found both in the Milky Way and the LMC, are excellent tracers of old and metal-poor populations.

By measuring the movement of 43 RR Lyrae stars in the inner regions of the LMC, the team determined that a moving hot, metal-poor, old halo also exists in the LMC, suggesting that the Milky Way and smaller, more irregular galaxies like the LMC have similar early formation histories.


The research, titled "Kinematic Evidence for an Old Stellar Halo in the Large Magellanic Cloud," is featured in the Sept. 12 issue of Science.

Kem Cook of Livermore’s Institute of Geophysics and Planetary Physics and part of the Massive Compact Halo Objects (MACHO) team, which previously discovered the RR Lyrae stars in the LMC, noted that they are an easily identified tracer of an old, metal-poor population. The LMC is more than 160,000 light-years away from our galaxy.

"The bottom line is that the Large Magellanic Cloud seems to have had a similar early formation history as the Milky Way," Cook said. "It created a spherical component that is not rotationally supported, but the stars have high random velocities, like a hot gas."

Cook, along with scientists from Universidad Pontifica Catolica in Chile, the European Southern Observatory, Columbia Astrophysics Laboratory and the Mount Stromlo Observatory at The Australian National University, observed the LMC RR Lyrae stars in January 2003 and measured the radial velocity dispersion using the European Southern Obervatories VLT.

The large-velocity dispersion of the LMC RR Lyrae stars scales to the Milky Way RR Lyrae star’s velocity dispersion and indicates that metal-poor old stars in the LMC are distributed in a halo population.

Models of halo formation by accretion indicate that these old objects formed in small satellite galaxies that were subsequently accreted (eaten up) by the galaxy. Meanwhile, models of halo formation by dissipational collapse indicate that the halo formed rapidly before the disk collapsed. The researchers applied these models to smaller galaxies and observed a halo population in the LMC by its oldest objects.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Physics and Astronomy:

nachricht On Mars, sands shift to a different drum
24.05.2019 | University of Arizona

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>