Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening Up the Dark Side of the Universe

10.09.2003


Physicists in the UK are ready to start construction of a major part of an advanced new experiment, designed to search for elusive gravitational waves. They are already part of two experiments: the UK/German GEO 600 project and the US LIGO experiment (Laser Interferometer Gravitational-Wave Observatory), both in their commissioning phases. By bringing GEO 600 technology to LIGO, they and their German colleagues from the Albert Einstein Institute are now set to become full partners in Advanced LIGO, a more sensitive observatory that once fully operational should be able to detect a gravitational wave event a day.



Gravitational waves should be created when massive objects, such as black holes or neutron stars in astronomical binaries interact and spiral-in towards, and eventually collide with, each other emitting a strong burst of gravitational radiation or when a star, at the end of its long evolutionary phase, collapses due to its own gravity resulting in a supernova with the core forming a neutron star or a black hole. Rapidly rotating neutron stars or pulsars with tiny
deformities in their spherical shape, and newly formed neutron stars, are continuous emitters of the radiation. There should also be background "noise" made up from a population of such events and, possibly, phase transitions in the early Universe and the echoes of the Big Bang itself.

First predicted by Einstein’s Theory of Relativity, gravitational waves have never been observed, but indirect evidence of their existence has been obtained by measuring the effect of their emission by a binary pulsar system (two neutron stars orbiting each other). The observed effect was found to match predictions.



Professor Ken Strain, Institute for Gravitational Research at the University of Glasgow, explains "Gravitational waves are ripples in the fabric of space-time, produced by the acceleration of mass. Because the gravitational interaction is very weak, large masses and high accelerations are needed to produce gravitational waves of significant amplitude. These are the very conditions that occur during violent astrophysical events such as supernovae or when neutron stars coalesce."

The detection and study of gravitational radiation will be of great scientific importance. It will open up a new window on the universe through which may come unique information about a variety of astrophysical systems -supernova explosions, black hole formation, pulsars and coalescing compact binary objects. It is also possible that totally unexpected discoveries will be made, in much the same way as has occurred in radio and x-ray astronomy.

Gravity waves regularly pass through the Earth unnoticed, as Dr Chris Castelli of Birmingham University explains: "As gravity waves pass through, they contract or expand by tiny amounts in a plane perpendicular to the direction they are moving, usually too small to notice. If we split a laser signal and send it off in perpendicular directions before bouncing the light back off test masses and recombining it, we can measure whether the light has travelled the same distance in each direction. If a gravity wave has interacted with the system, it will have changed the relative distance between the test masses forming the two perpendicular arms."

The longer the baseline of the detector, the more sensitive it is. However, as practical constraints limit the size of experimental facilities, GEO 600 has come up with new ways of improving sensitivity using triple suspended test masses, advanced optics and specialised control electronics. Sharing this technology with Advanced LIGO is granting full partner status to GEO 600 and will contribute to enhancing LIGO to Advanced LIGO, with a factor of ten increase in sensitivity.

Mr Justin Greenhalgh, of CCLRC Rutherford Appleton Laboratory explains the benefits of the GEO 600 technology: "The UK team will provide quadruple pendulum suspensions developed from the GEO 600 triple design. The extra stage provides enhanced isolation against seismic noise and noise from the control systems that are required to allow Advanced LIGO to achieve extreme sensitivity at low observation frequencies. The suspension design incorporates ultra-low mechanical loss techniques pioneered in GEO 600 to meet the exacting requirements set by the science goals for Advanced LIGO"

Grants totalling £8.6 million have been made by the Particle Physics and Astronomy Research Council (PPARC) for Glasgow and Birmingham Universities to carry out the work. Much of the construction work, and overall management of the UK programme,
will be done by CCLRC Rutherford Appleton Laboratory.

Julia Maddock | alfa
Further information:
http://www.geo600.uni-hannover.de/geo600/site/photoindex.html
http://www.ligo.caltech.edu/LIGO_web/PR/scripts/photos.html

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>