Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar system ’fossils’ discovered by Hubble Telescope

08.09.2003


Astronomers using NASA’s Hubble Space Telescope have discovered three of the faintest and smallest objects ever detected beyond Neptune. Each lump of ice and rock is roughly the size of Philadelphia and orbits just beyond Neptune and Pluto, where they may have rested since the formation of the solar system 4.5 billion years ago. The objects reside in a ring-shaped region called the Kuiper Belt, which houses a swarm of icy rocks that are leftover building blocks, or "planetesimals," from the solar system’s creation.



The results of the search were announced by a group led by Gary Bernstein of the University of Pennsylvania at today’s meeting of NASA’s Division of Planetary Sciences in Monterey, Calif.

The study’s big surprise is that so few Kuiper Belt members were discovered. With Hubble’s exquisite resolution, Bernstein and his co-workers expected to find at least 60 Kuiper Belt members as small as 10 miles in diameter -- but only three were discovered.


"Discovering many fewer Kuiper Belt Objects than was predicted makes it difficult to understand how so many comets appear near Earth since many comets were thought to originate in the Kuiper Belt," said Bernstein, associate professor of physics and astronomy at Penn. "This is a sign that perhaps the smaller planetesimals have been shattered into dust by colliding with each other over the past few billion years."

Bernstein and his colleagues used Hubble to look for planetesimals that are much smaller and fainter than can be seen from ground-based telescopes. Hubble’s Advanced Camera for Surveys was pointed at a region in the constellation Virgo over a 15-day period in January and February. A bank of 10 computers on the ground worked for six months searching for faint moving spots in the Hubble images.

The three small objects the astronomers spotted - given the prosaic names 2003 BF91, 2003 BG91 and 2003 BH91 - range in size from 15 to 28 miles and are the smallest objects ever found beyond Neptune. At their current locations, these objects are a billion times fainter than the dimmest objects visible to the naked eye. But an icy body of this size that escapes the Kuiper Belt to wander near the sun can become visible from Earth as a comet as the wandering body starts to evaporate and form a surrounding cloud.

Astronomers are probing the Kuiper Belt because the region offers a window on the early history of our solar system. The planets formed more than 4 billion years ago from a cloud of gas and dust that surrounded the infant sun. Microscopic bits of ice and dust stuck together to form lumps that grew from pebbles to boulders to city- or continent-sized planetesimals. The known planets and moons are the result of collisions between planetesimals. In most of the solar system, all of the planetesimals have either been absorbed into planets or ejected into interstellar space, destroying the traces of the early days of the solar system.

Around 1950, Gerard Kuiper and Kenneth Edgeworth proposed that in the region beyond Neptune there are no planets capable of ejecting the leftover planetesimals, so there should be a zone, now called the Kuiper Belt, filled with small, icy bodies. Despite many years of searching, the first was not discovered until 1992; nearly 1,000 have since been discovered from telescopes on the ground. Most astronomers now believe that Pluto, discovered in 1930, is in fact a member of the Kuiper Belt.

Astronomers now use the Kuiper Belt to learn about the history of the solar system, much as paleontologists use fossils to study early life. Each event that affected the outer solar system -- such as possible gravitational disturbances from passing stars or long-vanished planets -- is frozen into the properties of the Kuiper Belt members that we see today.

If the Hubble telescope could search the entire sky, it would find perhaps a half-million planetesimals, but, if collected into a single planet, they would be only a few times larger than Pluto. The new Hubble observations, combined with the latest ground-based Kuiper Belt surveys, reinforce the idea that Pluto itself and its moon Charon are just large Kuiper Belt members. Why the Kuiper Belt planetesimals did not form a larger planet and why there are fewer small planetesimals than expected are questions that will be answered with further study of the Kuiper Belt. This will help to understand how planets might have formed around other stars as well.

The new results from Hubble were reported by Bernstein and David Trilling of Penn; Renu Malhotra of the University of Arizona; Lynne Allen of the University of British Columbia; Michael Brown of the California Institute of Technology; and Matthew Holman of the Harvard-Smithsonian Center for Astrophysics. The results have been submitted to the Astronomical Journal for publication.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>