Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smallest whirlpools can pack stunningly strong force

04.09.2003


Researchers studying physical and chemical processes at the smallest scales, smaller even than the width of a human hair, have found that fluid circulating in a microscopic whirlpool can reach radial acceleration more than a million times greater than gravity, or 1 million Gs.



By contrast, a pilot flying a fighter jet at high speed and in relatively tight circular patterns might experience a force of 10 to 12 Gs, making the force his body feels 10 to 12 times normal.

"From a physical perspective, it’s not so surprising since the number of Gs goes up with an increase in velocity and the reduction in radius," said Daniel Chiu, a University of Washington assistant chemistry professor in whose laboratory the research was conducted.


What was surprising is just how much acceleration was achieved when the radius of the vortex – the tight circular pattern in which tiny molecules were flying – was reduced to such minute scales.

In this case, a tiny chamber one-third to one-half the width of a human hair was used to create a vortex in which less than a billionth of a liter of water reached an acceleration of more than 1 million Gs. The force was so strong that polystyrene beads a micron (1 millionth of a meter) in size, which the scientists were using to help visualize the flow of water, completely separated from the liquid in the vortex.

The finding by Chiu, doctoral student J. Patrick Shelby and research associates David Lim and Jason Kuo appears in the Sept. 4 edition of the journal Nature.

"It’s just something neat that we stumbled upon," Chiu said. "You have a tiny volume of fluid and it is zipping around very rapidly."

The work, paid for by a grant from the National Science Foundation, could have future effects, as scientists and engineers explore microfluidics for a variety of applications. For instance, some researchers foresee a time when microfluidic systems can be used anywhere for quick analysis of biological samples. Some envision that a credit card-sized device with a microscopic needle could be applied painlessly to the body to obtain a particular sample, such as blood, and then microfluidic systems embedded in the card could profile the biochemical composition of the minute sample. That could mean a sick person in a remote location could receive a diagnosis in hours rather than waiting for days or weeks for samples to be sent to laboratories.

Chiu notes that there are large, high-powered commercial and government centrifuges that can achieve acceleration of several hundred thousand Gs, some possibly even exceeding 1 million. Materials that most humans are familiar with would be altered significantly or destroyed if exposed to such forces.

But that might or might not hold true at microscopic scales, Chiu said.

"The force would feel very small to us because the mass is so small at this microscopic scale, even though the acceleration is very high," he said. "But if you had humans living at that microscale, to them I imagine the force would feel very large."


For more information, contact Chiu at 206-543-1655 or chiu@chem.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>