Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA sees stardust storms heading for Solar System

20.08.2003


Until ten years ago, most astronomers did not believe stardust could enter our Solar System. Then ESA’’s Ulysses spaceprobe discovered minute stardust particles leaking through the Sun’s magnetic shield, into the realm of Earth and the other planets. Now, the same spaceprobe has shown that a flood of dusty particles is heading our way.



Since its launch in 1990, Ulysses has constantly monitored how much stardust enters the Solar System from the interstellar space around it. Using an on-board instrument called DUST, scientists have discovered that stardust can actually approach the Earth and other planets, but its flow is governed by the Sun’s magnetic field, which behaves as a powerful gate-keeper bouncing most of it back. However, during solar maximum - a phase of intense activity inside the Sun that marks the end of each 11-year solar cycle - the magnetic field becomes disordered as its polarity reverses. As a result, the Sun’s shielding power weakens and more stardust can sneak in.

What is surprising in this new Ulysses discovery is that the amount of stardust has continued to increase even after the solar activity calmed down and the magnetic field resumed its ordered shape in 2001.


Scientists believe that this is due to the way in which the polarity changed during solar maximum. Instead of reversing completely, flipping north to south, the Sun’s magnetic poles have only rotated at halfway and are now more or less lying sideways along the Sun’s equator. This weaker configuration of the magnetic shield is letting in two to three times more stardust than at the end of the 1990s. Moreover, this influx could increase by as much as ten times until the end of the current solar cycle in 2012.

The stardust itself is very fine - just one-hundredth of the width of a human hair. It is unlikely to have much effect on the planets but it is bound to collide with asteroids, chipping off larger dust particles, again increasing the amount of dust in the inner Solar System. On the one hand, this means that the solar panels of spacecraft may be struck more frequently by dust, eventually causing a gradual loss of power, and that space observatories looking in the plane of the planets may have to cope with the haze of more sunlight diffused by the dust.

On the other hand, this astronomical occurrence could offer a powerful new way to look at the icy comets in the Kuiper Belt region of the outer Solar System. Stardust colliding with them will chip off fragments that can be studied collectively with ESA’s forthcoming infrared space telescope, Herschel. This might provide vital insight into a poorly understood region of the Solar System, where the debris from the formation of the planets has accumulated.

Back down on Earth, everyone may notice an increase in the number of sporadic meteors that fall from the sky every night. These meteors, however, will be rather faint.

Astronomers still do not know whether the current stardust influx, apart from being favoured by the particular configuration of the Sun’s magnetic field, is also enhanced by the thickness of the interstellar clouds into which the Solar System is moving. Currently located at the edge of what astronomers call the local interstellar cloud, our Sun is about to join our closest stellar neighbour Alpha Centauri in its cloud, which is less hot but denser.

ESA’s Ulysses data make it finally possible to study how stardust is distributed along the path of the Solar System through the local galactic environment. However, as it takes over 70 thousand years to traverse a typical galactic cloud, no abrupt changes are expected in the short term.

Markus Landgraf | alfa
Further information:
http://www.esa.int/sci_mediacentre/release2003.html?release=36

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>