Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MINOS detector ready to take first data

15.08.2003


Technicians assembled each detector plane on a strongback (foreground). The whole plane was then lifted by crane and transported to its final position. It took less than two days to assemble and erect a single plane.


Today, (August 14th), sees the start of data collection on the Main Injector Neutrino Oscillation Search (MINOS) detector, situated in the Soudan iron mine, Minnesota, USA. UK particle physicists, working within an international collaboration, will use the MINOS detector to investigate the phenomenon of neutrino mass – a puzzle that goes to the heart of our understanding of the Universe.

Neutrinos are pointlike, abundant particles with very little mass. They exist in three types or ‘flavours’ and recent experiments (including those at SNO – the Sudbury Neutrino Observatory) have demonstrated that neutrinos are capable of oscillating between these flavours (electron, tau and muon). This can only happen if one or more of the neutrino flavours does have mass, in contradiction to the Standard Model of particle physics.

The MINOS detector will start measurements of cosmic ray showers penetrating the Earth. It is situated in the Soudan Mine, Minnesota. The 30-metre-long detector consists of 486 massive octagonal planes, lined up like the slices of a loaf of bread. Each plane consists of a sheet of steel about 8 metres high and 2 ½ cm thick, covered on one side with a layer of scintillating plastic that emits light when struck by a charged particle.



“MINOS can separate neutrino interactions from their antimatter counterparts – the antineutrinos.” explains UK MINOS spokesperson, Jenny Thomas from University College London. “The data taken now from neutrinos produced in cosmic ray cascades may provide new insight into why the Universe is made of more matter than antimatter. At least, for the first time we will be able to compare the characteristics of neutrinos and anti-neutrinos coming from the atmosphere.”

However, MINOS has more ambitious plans in place for August 2004. Whilst most experiments like SNO measure neutrinos coming from the Sun, when complete, MINOS will instead study a beam of man-made neutrinos, all of the same type or ‘flavour’ – the muon neutrino flavour. This beam will be created at Fermi National Accelerator Laboratory (Fermilab) and sent straight through the Earth to Soudan – a distance of 735 kilometres. No tunnel is needed because neutrinos interact so rarely with matter. A detector is currently being built just outside Fermilab, known as the ‘near’ detector, similar but smaller than the now operational MINOS detector, known as the ‘far’ detector. The ‘near’ detector will act as a control, studying the beam as it leaves Fermilab, then the results will be compared with those from the ‘far’ detector to see if the neutrinos have oscillated into electron or tau neutrinos during their journey.

A million million neutrinos will be created at Fermilab each year, but only 1,500 will interact with the nucleus of an atom in the far detector and generate a signal; the others will pass straight through.

“The realisation that neutrinos oscillate, first demonstrated by the Super Kamiokande experiment in Japan, has been one of the biggest surprises to emerge in particle physics since the inception of the Standard Model more than 30 years ago.” says Jenny Thomas. “The MINOS experiment will measure the oscillation parameters of these neutrinos to an unprecedented accuracy of a few percent; an amazing feat considering neutrinos can usually pass directly through the Earth without interacting at all and that their inferred masses are estimated to be less than 1eV. (The weight ratio of a neutrino to a 1kg bag of sugar is the same as the ratio of a grain of sand to the weight of the earth!). The parameter measurement will open up an entire new field of particle physics, to understand what effect on the universe this tiny neutrino mass has.”

Within two years of turning on the neutrino beam, MINOS should produce an unequivocal measurement of the oscillation of muon neutrinos with none of the uncertainties associated with the atmospheric or solar neutrino source. If indeed the findings are positive, then a new era in particle physics will begin. Theorists will have to incorporate massive neutrinos into the Standard Model, which will have exciting implications. Furthermore cosmologists will have a strong candidate for the ‘missing mass’ of the Universe (which dynamical gravitational measurements show must exist). The experimental side will be just as exciting as we plan new experiments to measure precisely how the different neutrinos change their flavour.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/Press/MINOS.asp
http://www.fnal.gov/pub/presspass/press_releases/minosdata.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>