Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single Photon Detector Conquers the Dark Side

13.08.2003


Researchers from the National Institute of Standards and Technology (NIST) and Boston University have demonstrated a detector that counts single pulses of light, while simultaneously reducing false or “dark counts” to virtually zero.



Reported in the July 28, 2003, issue of Applied Physics Letters*, the advance provides a key technology needed for future development of secure quantum communications and cryptography.

Quantum communications and cryptography is a codemaker’s Holy Grail. The idea is to use a rapid series of light pulses (photons) in one of two different states to transmit information in an unbreakable code.


The photon detector project is part of a multi-disciplinary NIST effort to develop the sophisticated measurement methods needed to make quantum communication and cryptography possible. Funding was provided by the Defense Advanced Research Projects Agency (DARPA) and the NIST Advanced Technology Program (ATP).

Most current photon detectors operate best with visible light, cannot reliably detect single photons and suffer from high dark counts due to random electronic noise. The new device operates with the wavelength of near-infrared light used for fiber optic communications and produces negligible dark counts. Instead of using light-sensitive materials, the NIST device uses a tungsten film coupled to a fiber optic communication line. The film is chilled to 120 milliKelvin, at its transition temperature between normal conductivity and superconductivity. When the fiber optic line delivers a photon to the tungsten film, the temperature rises and the apparatus detects it as an increase in electrical resistance.

The device detects about 20,000 photons per second and works with an efficiency of about 20 percent. With planned improvements, the research team hopes to increase efficiencies to greater than 80 percent.

Media Contact:
Fred McGehan (Boulder), (303) 497-3246

* Miller, A.J., Nam, S.W., Martinis, J.M. and Sergienko, A.V. Demonstration of a low-noise near-infrared photon counter with multi-photon discrimination, Applied Physics Letters (July 28, 2003), Vol. 83, No. 4, pp. 791-793.

Fred McGehan | NIST
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2003_0811.htm#photon

More articles from Physics and Astronomy:

nachricht Supporting structures of wind turbines contribute to wind farm blockage effect
13.12.2019 | American Institute of Physics

nachricht Chinese team makes nanoscopy breakthrough
13.12.2019 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>