Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s largest astronomical CCD camera installed on Palomar Observatory telescope

30.07.2003


Oschin Telescope Dome


Oschin Telescope


The world’s largest astronomical camera has been installed on Palomar Observatory’s 48-inch Oschin Telescope in California. This telescope has been working to improve our understanding of the universe for nearly 55 years. The new upgrade will help it to push the limits of the unknown for years to come.

The new camera is known as QUEST (Quasar Equatorial Survey Team). Designed and built by astrophysicists at Indiana and Yale universities, QUEST recently "saw" its first starlight and is now scanning the sky.

In 2001, an electronic camera known as the Near-Earth Asteroid Tracker was installed in the Oschin Telescope. The camera, which employed a charge-coupled device (CCD) to detect light, was very successful. During its tenure on Palomar, the NEAT team discovered 189 near-Earth asteroids and 20 comets.



A charge-coupled device is a light-sensitive integrated circuit that stores and displays the data for an image in such a way that each pixel in the image is converted into an electrical charge whose intensity is related to a color in the visual spectrum. The QUEST camera has an array of 112 CCDs.

The Oschin Telescope had to undergo some major changes to accommodate the QUEST camera. Under the oversight of Richard Ellis, director of Palomar Observatory, this process was guided by Robert Thicksten and Hal Petrie of the California Institute of Technology. The delicate installation of the camera and its electronics inside the telescope was handled by Mark Gebhard (Indiana University), William Emmet (Yale University) and David Rabinowitz (Yale University). The camera’s readout electronics were constructed in the Physics and Astronomy departments at Indiana University by Gebhard and Brice Adams, under the direction of James Musser, Kent Honeycutt and Stuart Mufson. The hardware for the QUEST camera was constructed by the Yale University Physics Department under the direction of Charles Baltay.

In addition to the usual point-and-shoot mode, the new camera is designed to work in the drift scan mode. The telescope is pointed at the sky but does not move to counteract the rotation of the Earth. Instead, various objects in the sky gradually drift across the field of view at the same rate as the computer records data from the CCDs, producing photographs that are long strips of the sky. Astronomers will use these photographic slices of the sky to look for quasars, supernovae, asteroids and more.

Last year, Caltech astronomers Chad Trujillo and Mike Brown used the NEAT camera on the Oschin Telescope to find the distant world known as Quaoar. Quaoar is about half the size of Pluto, making it the biggest object to be found in our solar system since Pluto was discovered in 1930. Quaoar is the largest known member of the Kuiper Belt, a swarm of thousands of icy objects that orbit beyond Neptune. Brown is convinced there are more big Kuiper Belt objects, possibly as big as the planet Mars, and he will use QUEST to look for them.

Other scientists plan to use the camera to find objects that might be quasars. Quasars are the very bright cores of distant galaxies that are thought to contain supermassive black holes. They are among the most luminous objects in the universe. Any quasar candidates that are found with the Oschin Telescope will be looked at again with Palomar’s 200-inch Hale Telescope. Those objects that the Hale Telescope confirms to be quasars will be the targets of more detailed study with one of the 10-meter Keck Telescopes in Hawaii.

A similar approach will be used as distant galaxies are probed in a search for exploding stars known as supernovae. The QUEST camera will do the survey work, suspected supernovae will be looked at with the Hale Telescope, and supernovae of the right type will be scrutinized at one of the Keck Telescopes. Astronomers will use data from these exploding stars to try to confirm that the universe is accelerating as it expands.

Palomar Observatory, owned and operated by the California Institute of Technology and located in north San Diego County, Calif., supports the research of Caltech faculty and students, and that of researchers at Caltech’s collaborating institutions: Indiana University, Cornell University, Yale University and the Jet Propulsion Laboratory.

Contact: James Musser, at +1-812-855-9933, musser@bigbang.astro.indiana.edu
or Kent Honeycutt at +1-812-855-6916, honey@astro.indiana.edu

James Musser | Indiana University
Further information:
http://www.indiana.edu

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>