Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small galaxy springs "dark matter" surprises

25.07.2003


Astronomers from the University of Cambridge, UK, have found for the first time the true outer limits of a galaxy. They have also shown that the dark matter in this galaxy is not distributed in the way conventional theory predicts.



The team - Professor Gerry Gilmore, Dr Mark Wilkinson, Dr Jan Kleyna and Dr Wyn Evans - presents its results today at the 25th General Assembly of the International Astronomical Union in Sydney, Australia. The work could provide the key to understanding how larger galaxies were formed, including our own Milky Way galaxy.

The researchers studied rare "dwarf spheroidal" galaxies. These have few visible stars but contain massive amounts of "dark matter" - a mysterious kind of matter that does not emit its own light or radiation, and therefore cannot be directly observed by astronomers. However, dark matter can be detected by the gravitational pull it exerts on visible objects such as stars.


Astronomers think that dwarf spheroidal galaxies may be the building blocks from which larger, mainstream galaxies were formed.

Some of the dwarf spheroidals - those in our "Local Group" of galaxies - are close enough for astronomers to be able to trace the movements of their individual stars.

A galaxy is held together by the combined gravity of its stars and dark matter. By studying the motion of stars in some of the dwarf spheroidal galaxies, the researchers have created a picture of how the mass of each galaxy is distributed.

In one dwarf spheroidal, found in the constellation Ursa Minor, the team found a clump of slow-moving stars near the galaxy´s centre. They interpreted this clump as the remains of a group of stars known as a globular cluster.

This group of stars flies in the face of the most popular model for how dark matter is distributed in galaxies. The "lambda cold dark matter" model, which explains very well the large-scale structures in the Universe, predicts that dark matter rapidly increases in density towards the centre of a galaxy. If dark matter were distributed in this way in the Ursa Minor dwarf spheroidal galaxy, the star cluster would have been dispersed. The cluster´s existence shows that the dark matter is in fact distributed differently in this galaxy.

Furthermore, additional research into the Ursa Minor dwarf spheroidal has revealed the true edge of that galaxy - the point at which the dark matter stops. In most galaxies the way the stars move indicates that the dark matter extends far beyond the visible starry regions. In the Ursa Minor dwarf spheroidal, however, the stars in its very outermost parts are not moving quickly. This implies that there is little dark matter in the halo surrounding that galaxy.

Perhaps some of the dark matter has been nibbled off at the edges by the nearest massive galaxy (our own Milky Way), allowing some of the stars to slowly wander away. Or maybe the slow-moving stars could be ones that were "flung out" from the centre of the galaxy to its edges. Whatever the explanation, the finding represents the first detection of the true outer limits of a galaxy.

"Simulations of galaxy formation generally predict the existence of many more small galaxies around the Milky Way than are actually observed," said Gerry Gilmore, Professor of Experimental Philosophy at the Institute of Astronomy at the University of Cambridge. "However, this prediction is based on assumptions about the masses of the galaxies we observe."

"Our work is aimed at determining how much mass is actually present in the dwarf galaxies around the Milky Way. But until we have a rough idea of where the outer limits of these galaxies lie, we cannot claim to have measured their total mass."

Contact:

Professor Gerry Gilmore
University of Cambridge, United Kingdom
Email: gil@ast.cam.ac.uk

Professor Gerry Gilmore | EurekAlert!
Further information:
http://www.ast.cam.ac.uk

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>