Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small galaxy springs "dark matter" surprises

25.07.2003


Astronomers from the University of Cambridge, UK, have found for the first time the true outer limits of a galaxy. They have also shown that the dark matter in this galaxy is not distributed in the way conventional theory predicts.



The team - Professor Gerry Gilmore, Dr Mark Wilkinson, Dr Jan Kleyna and Dr Wyn Evans - presents its results today at the 25th General Assembly of the International Astronomical Union in Sydney, Australia. The work could provide the key to understanding how larger galaxies were formed, including our own Milky Way galaxy.

The researchers studied rare "dwarf spheroidal" galaxies. These have few visible stars but contain massive amounts of "dark matter" - a mysterious kind of matter that does not emit its own light or radiation, and therefore cannot be directly observed by astronomers. However, dark matter can be detected by the gravitational pull it exerts on visible objects such as stars.


Astronomers think that dwarf spheroidal galaxies may be the building blocks from which larger, mainstream galaxies were formed.

Some of the dwarf spheroidals - those in our "Local Group" of galaxies - are close enough for astronomers to be able to trace the movements of their individual stars.

A galaxy is held together by the combined gravity of its stars and dark matter. By studying the motion of stars in some of the dwarf spheroidal galaxies, the researchers have created a picture of how the mass of each galaxy is distributed.

In one dwarf spheroidal, found in the constellation Ursa Minor, the team found a clump of slow-moving stars near the galaxy´s centre. They interpreted this clump as the remains of a group of stars known as a globular cluster.

This group of stars flies in the face of the most popular model for how dark matter is distributed in galaxies. The "lambda cold dark matter" model, which explains very well the large-scale structures in the Universe, predicts that dark matter rapidly increases in density towards the centre of a galaxy. If dark matter were distributed in this way in the Ursa Minor dwarf spheroidal galaxy, the star cluster would have been dispersed. The cluster´s existence shows that the dark matter is in fact distributed differently in this galaxy.

Furthermore, additional research into the Ursa Minor dwarf spheroidal has revealed the true edge of that galaxy - the point at which the dark matter stops. In most galaxies the way the stars move indicates that the dark matter extends far beyond the visible starry regions. In the Ursa Minor dwarf spheroidal, however, the stars in its very outermost parts are not moving quickly. This implies that there is little dark matter in the halo surrounding that galaxy.

Perhaps some of the dark matter has been nibbled off at the edges by the nearest massive galaxy (our own Milky Way), allowing some of the stars to slowly wander away. Or maybe the slow-moving stars could be ones that were "flung out" from the centre of the galaxy to its edges. Whatever the explanation, the finding represents the first detection of the true outer limits of a galaxy.

"Simulations of galaxy formation generally predict the existence of many more small galaxies around the Milky Way than are actually observed," said Gerry Gilmore, Professor of Experimental Philosophy at the Institute of Astronomy at the University of Cambridge. "However, this prediction is based on assumptions about the masses of the galaxies we observe."

"Our work is aimed at determining how much mass is actually present in the dwarf galaxies around the Milky Way. But until we have a rough idea of where the outer limits of these galaxies lie, we cannot claim to have measured their total mass."

Contact:

Professor Gerry Gilmore
University of Cambridge, United Kingdom
Email: gil@ast.cam.ac.uk

Professor Gerry Gilmore | EurekAlert!
Further information:
http://www.ast.cam.ac.uk

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>