Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microflares could play macro role in heating corona

21.07.2003



The sun´s big, bright, explosive flares are the attention grabbers, but tiny, more numerous microflares may have nearly as much influence on the solar atmosphere, according to new data from the University of California, Berkeley´s RHESSI satellite.

Solar flares, the largest explosions in the solar system, propel energetic particles into space and are thought to be the main source of heat pumping the sun´s outer atmosphere to a few million degrees Celsius -- hotter than the surface itself.

Now, solar observations by the RHESSI (Reuven Ramaty High-Energy Solar Spectroscopic Imager) satellite show that microflares a million times smaller are far more frequent and may together provide a major portion of the heat in the corona.



"The big question for microflares is, are there enough of them? Do they occur frequently enough and dump enough energy into the corona?" said Robert Lin, professor of physics at UC Berkeley and principal investigator for RHESSI. "RHESSI can see these tiny flares to lower energies than before, and our observations are beginning to show that there is more energy released in these tiny flares than people had originally thought."

Since solar flares play a major role in space weather, RHESSI´s discoveries about flares and microflares could eventually help predict the big storms that interfere with radio communications on Earth.

Lin will present new data from RHESSI in a talk at 3:30 p.m. on Monday, July 21, at the meeting of the International Astronomical Union in Sydney, Australia.

RHESSI, launched by NASA in February 2002 to study X-ray and gamma-ray emissions from flares, has observed more than 10,000 microflares in the past year and a half. These microflares are identified by the hard X-rays they emit, which RHESSI is able to detect with 10 to 500 times the sensitivity of any previous instruments flown in space.

These X-ray observations show that microflares are merely smaller versions of their larger cousins, Lin said. Some astronomers have suggested that microflares may be mainly thermal events, heating the sun but not accelerating particles like larger flares. If that were the case, they would produce more low-energy soft X-rays than high-energy hard X-rays. But they do not.

"We´ve noticed that microflares are very similar to big flares. In big flares, a lot of the energy, perhaps most of it, comes out in accelerated particles -- electrons, protons and heavy nuclei," Lin said. "We are finding the same to be true of microflares."

Interestingly, a subset of microflares appears to be a different animal entirely and responsible for a type of radio burst from the sun studied intensively by pioneering Australian radio astronomer Paul Wild in the 1960s and 1970s. These so-called Type III bursts are characterized by radio signals that decrease in frequency, like the whistle from a departing train.

RHESSI has seen many Type III bursts, and they appear to be associated with microflares that do very little heating of the solar atmosphere. Instead, the stream of high-speed particles they produce seems to jet unchecked out of the sun at speeds up to one-third the speed of light, exciting radio oscillations at lower and lower frequencies as the particles pass through lower and lower density plasma.

"This probably has to do with the magnetic field in the region around the microflare, since particles are pretty much tied to the field lines and have to run along them," Lin said. "We think that for normal microflares, the particle acceleration occurs in a closed magnetic region so the electrons can´t get away; they do more heating that way. In Type III bursts, the electrons are accelerated in an open magnetic field, and they have an easy way to escape, so they do less heating in the corona."

Aside from RHESSI´s numerous observations of microflares, the satellite´s X-ray and gamma-ray instruments have also captured several large flares. These have allowed the RHESSI team to investigate the relationship between flares and coronal mass ejections (CME), which are another type of large stellar explosion that sends shock waves into space. One conclusion, Lin said, is that the fastest coronal mass ejections -- those moving at 1 to 5 million miles per hour (1.6 to 8 million kilometers per hour) -- are linked directly to solar flares.

"With RHESSI, we can image the location of a flare´s initial release of energy and accelerated particles," Lin said. "When we look at extremely big and fast coronal mass ejections and extrapolate back to the sun, we find that at the very point where the coronal mass ejection is initiated, that is exactly where the flare energy release happened. The flare starts everything off."

These largest of the mass ejections are the ones that have the greatest effect on Earth, exciting geomagnetic storms that can cause power outages and damage communications satellites. The shock wave from coronal mass ejections also produces energetic particles that pose a hazard to satellites and astronauts.

"If we understood the process, we could begin predicting when coronal mass ejections should happen," Lin said. "We´re still a long way from that, but it makes it extremely interesting to discover the relationship between flares and coronal mass ejections."

It is still unclear whether other types of coronal mass ejections are related to solar flares, he said.

Both flares and coronal mass ejections are produced by the roiling magnetic fields in the surface of the star. As the surface churns, magnetic field lines get twisted like rubber bands. When the tension becomes too great, they break, snapping and flinging charged particles outward in a solar flare.

Flares can trigger coronal mass ejections, which are massive rising bubbles of plasma entangled with the magnetic field. But some mass ejections seem unrelated to flares, Lin said. One possible explanation is that these come from magnetic fields that kink as they twist, so the magnetic field intensity doesn´t get compressed enough to explode into a flare.

"In this case, the magnetic fields slowly kink and eventually start to rise, dragging plasma with it them," he said. "They´re not associated with a flare because they don´t break suddenly.

"The very fast, powerful CMEs are probably the breaking kind."

RHESSI will continue its observations of solar flares for at least another two years, and probably longer.

The RHESSI scientific payload is a collaborative effort among UC Berkeley, NASA Goddard Spaceflight Center, the Paul Scherrer Institut in Switzerland and the Lawrence Berkeley National Laboratory. The mission also involves additional scientific participation from France, Japan, The Netherlands, Scotland and Switzerland.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Halfway mark for NOEMA, the super-telescope under construction
20.09.2018 | Max-Planck-Institut für Radioastronomie

nachricht What even Einstein didn't know
20.09.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>