Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab’s Upgraded Free-Electron Laser Produces First Light

03.07.2003


A view inside JLab’s Free-Electron Laser vault, showing the upgraded linear accelerator on the right and the infrared wiggler magnet on the left.


Researchers at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility have produced first light from their 10 kilowatt Free-Electron Laser (FEL). This device has been upgraded from the "one kilowatt Infrared Demonstration" FEL, which broke power records by delivering 2,100 watts of infrared light during 2001. Only one and one-half years after the one kilowatt FEL was dismantled, the newly improved FEL, designed to produce 10 kilowatts of infrared and one kilowatt of ultraviolet light, is undergoing commissioning toward the goal of producing 10 kilowatts by summer’s end.

According to Rear Admiral Jay Cohen, Chief of Naval Research, "This project builds on the successful seven-year partnership forged between the Office of Science’s Jefferson Lab and the Office of Naval Research. The original kilowatt FEL exceeded the Navy’s goals and expectations and we expect no less from the upgraded FEL."

The Free-Electron Laser upgrade project is funded by the Department of Defense’s Office of Naval Research (ONR), Air Force Research Laboratory and the Joint Technology Office. Jefferson Lab is managed for the Department of Energy’s Office of Science by a consortium of universities in the southeast called the Southeastern Universities Research Association.



To enable experimenters to probe deep inside the atom’s nucleus with electrons, Jefferson Lab pioneered superconducting technology for accelerating electrons to high energy in efficient, cost-effective accelerators. Jefferson Lab’s superconducting electron-accelerating technology offers two commanding cost advantages for FELs: the laser can stay on 100% of the time instead of only 1% or 2%, and more than 90% of the energy that is not converted to useful light in a single pass can be recycled.

The Navy’s interest in this technology is the development and demonstration of an electrically driven tunable laser that can operate at infrared wavelengths where light is most efficiently transmitted in the atmosphere for potential applications toward shipboard defense.

During the two and one-half years the so-called one-kilowatt FEL operated, it broke all existing power records for tunable high-average power lasers. It was used by more than 30 different research groups representing the Navy, NASA, universities and industry for a variety of applications ranging from the investigation of new cost-effective methods for producing carbon nanotubes and understanding the dynamics of hydrogen defects in silicon to investigating how proteins transport energy. These research groups are eagerly awaiting the newly upgraded FEL and are making plans for its use.


For additional information, contact Thomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, Virginia or the Office of Naval Research:


Linda Ware (ware@jlab.org)
Jefferson Lab Public Affairs Manager
(757) 269-7689 (fax: 7398)
Gail Cleere, (cleereg@onr.navy.mil)
ONR Public Affairs Officer
(703) 696-4987

Linda Ware | TJNAF
Further information:
http://www.jlab.org/news/archive/2003/firstlight.html

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>