Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JLab’s CLAS physicists learn a little more about ‘nothing,’ get thrown for a spin

03.07.2003


Daniel S. Carman (Ohio University) and nearly 150 members of Jefferson Lab’s CLAS Collaboration studied the spin transfer from a polarized electron beam to a produced Lambda particle. Their results were recently published in Physical Review Letters.



Measurements taken using Jefferson Lab’s CEBAF Large Acceptance Spectrometer (CLAS) are telling us more about how matter is produced from "nothing," that is, the vacuum.
Using the CLAS in Hall B, Daniel S. Carman of Ohio University and nearly 150 members of the CLAS Collaboration studied the spin transfer from a polarized electron beam to a produced Lambda particle. Their results were recently published in Physical Review Letters.

The CLAS experimenters collided JLab’s polarized electron beam into a proton target, producing a polarized Lambda (?0) and a kaon (K+). Physicists have long known that matter and anti-matter can be created when energetic particles strike one another. The new particles are not really created from "nothing." They are created from the available kinetic energy of the colliding particles. Visualize a bowling ball hitting its rack of 10 pins so hard that the 10 pins turn into 11 normal pins and one "anti-pin." Energy is conserved and so is matter; that’s why a new anti-matter particle is created each time a matter particle is created.



In a simple quark model of the reaction dynamics, a circularly polarized virtual photon strikes an oppositely polarized up quark inside the proton . The spin of the struck quark flips in direction and the quark recoils from its neighbors, stretching a flux-tube of gluonic matter between them. When the stored energy in the flux-tube is sufficient, the tube is "broken" by production of a strange quark-antiquark pair. Using this simple picture, the researchers could explain the angular dependence of the Lambda polarization if the quark pair was produced with the spins in opposite directions, or anti-aligned.

Putting the right spin on it

These anti-aligned spins could throw theorists into a spin. According to the popular triplet-P-zero (3P0) model, a quark-antiquark pair is produced with vacuum quantum numbers, and that means their spins should be aligned. These results imply that the 3P0 model may not be as widely applicable as was thought.

Winston Roberts, a theorist at Jefferson Lab and associate professor of physics at Old Dominion University, finds the CLAS measurement very interesting. "If they are right, it means we have to rethink what we thought we understood about our models for baryon decays," he says. "The CLAS results may also be saying something about what we understand of baryons themselves -- our knowledge of how to describe scattering processes such as the one they measure, or even that there may be oddities, peculiarities, dare I say ’strangeness,’ in the way strange quark-antiquark pairs are produced."

The experimenters expect further reaction from theorists. "Polarized Lambda production is obviously sensitive to the spin-dynamics of quark-pair creation," says Mac Mestayer, a JLab staff scientist, and one of the lead authors on the paper. "We eagerly await confirmation, or refutation, of the conclusions of our simple model by realistic theoretical calculations."

Meanwhile, Carman adds, the researchers are planning further experiments. "Our group is continuing this exciting research by extending our arguments to test our picture of the dynamics in different reactions."

These results show that we have much still to learn about the basic structure of the vacuum. One hundred years ago the vacuum was thought to consist of an "ether" through which light propagated as waves. Albert Michelson, Edward Morley, Albert Einstein and others disproved this hypothesis and the vacuum became an empty void. Twentieth century quantum field theories have now filled this once-empty space with virtual particles. It’s now obvious that a vacuum is not the cold, empty place it was once thought to be. JLab physicists and researchers are studying the spin of the produced quarks in hopes of understanding the vacuum better, as well as the matter that populates it.


###
by Mac Mestayer in collaboration with Melanie O’Byrne

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

nachricht 10,000 times faster calculations of many-body quantum dynamics possible
21.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>