Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JLab’s CLAS physicists learn a little more about ‘nothing,’ get thrown for a spin

03.07.2003


Daniel S. Carman (Ohio University) and nearly 150 members of Jefferson Lab’s CLAS Collaboration studied the spin transfer from a polarized electron beam to a produced Lambda particle. Their results were recently published in Physical Review Letters.



Measurements taken using Jefferson Lab’s CEBAF Large Acceptance Spectrometer (CLAS) are telling us more about how matter is produced from "nothing," that is, the vacuum.
Using the CLAS in Hall B, Daniel S. Carman of Ohio University and nearly 150 members of the CLAS Collaboration studied the spin transfer from a polarized electron beam to a produced Lambda particle. Their results were recently published in Physical Review Letters.

The CLAS experimenters collided JLab’s polarized electron beam into a proton target, producing a polarized Lambda (?0) and a kaon (K+). Physicists have long known that matter and anti-matter can be created when energetic particles strike one another. The new particles are not really created from "nothing." They are created from the available kinetic energy of the colliding particles. Visualize a bowling ball hitting its rack of 10 pins so hard that the 10 pins turn into 11 normal pins and one "anti-pin." Energy is conserved and so is matter; that’s why a new anti-matter particle is created each time a matter particle is created.



In a simple quark model of the reaction dynamics, a circularly polarized virtual photon strikes an oppositely polarized up quark inside the proton . The spin of the struck quark flips in direction and the quark recoils from its neighbors, stretching a flux-tube of gluonic matter between them. When the stored energy in the flux-tube is sufficient, the tube is "broken" by production of a strange quark-antiquark pair. Using this simple picture, the researchers could explain the angular dependence of the Lambda polarization if the quark pair was produced with the spins in opposite directions, or anti-aligned.

Putting the right spin on it

These anti-aligned spins could throw theorists into a spin. According to the popular triplet-P-zero (3P0) model, a quark-antiquark pair is produced with vacuum quantum numbers, and that means their spins should be aligned. These results imply that the 3P0 model may not be as widely applicable as was thought.

Winston Roberts, a theorist at Jefferson Lab and associate professor of physics at Old Dominion University, finds the CLAS measurement very interesting. "If they are right, it means we have to rethink what we thought we understood about our models for baryon decays," he says. "The CLAS results may also be saying something about what we understand of baryons themselves -- our knowledge of how to describe scattering processes such as the one they measure, or even that there may be oddities, peculiarities, dare I say ’strangeness,’ in the way strange quark-antiquark pairs are produced."

The experimenters expect further reaction from theorists. "Polarized Lambda production is obviously sensitive to the spin-dynamics of quark-pair creation," says Mac Mestayer, a JLab staff scientist, and one of the lead authors on the paper. "We eagerly await confirmation, or refutation, of the conclusions of our simple model by realistic theoretical calculations."

Meanwhile, Carman adds, the researchers are planning further experiments. "Our group is continuing this exciting research by extending our arguments to test our picture of the dynamics in different reactions."

These results show that we have much still to learn about the basic structure of the vacuum. One hundred years ago the vacuum was thought to consist of an "ether" through which light propagated as waves. Albert Michelson, Edward Morley, Albert Einstein and others disproved this hypothesis and the vacuum became an empty void. Twentieth century quantum field theories have now filled this once-empty space with virtual particles. It’s now obvious that a vacuum is not the cold, empty place it was once thought to be. JLab physicists and researchers are studying the spin of the produced quarks in hopes of understanding the vacuum better, as well as the matter that populates it.


###
by Mac Mestayer in collaboration with Melanie O’Byrne

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>