Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s a nova ... it’s a supernova ... it’s a HYPERNOVA

07.04.2003


Two billion years ago, in a far-away galaxy, a giant star exploded, releasing almost unbelievable amounts of energy as it collapsed to a black hole. The light from that explosion finally reached Earth at 6:37 a.m. EST on March 29, igniting a frenzy of activity among astronomers worldwide. This phenomenon has been called a hypernova, playing on the name of the supernova events that mark the violent end of massive stars.



With two telescopes separated by about 110 degrees longitude, the Robotic Optical Transient Search Experiment (ROTSE) will have one of the most continuous records of this explosion.

"The optical brightness of this gamma ray burst is about 100 times more intense than anything we’ve ever seen before. It’s also much closer to us than all other observed bursts so we can study it in considerably more detail," said Carl W. Akerlof, an astrophysicist in the Physics Department at the University of Michigan. Akerlof is the leader of ROTSE, an international collaboration of astrophysicists using a network of telescopes specially designed to capture just this sort of event. The collaboration is headquartered at U-M and funded by NASA and the National Science Foundation (NSF).


Just recently, the ROTSE group commissioned two optical telescopes in Australia and Texas and were waiting for the first opportunities to use the new equipment. The burst was promptly detected by NASA’s Earth orbiting High-Energy Transient Explorer (HETE-2) but human intervention was required to find the exact location. Despite sporadic clouds and rainstorms in Australia, the ROTSE instrument at Siding Spring Observatory in northern New South Wales was able to record the decaying light from the blast. Twelve hours later, the second ROTSE telescope in Fort Davis, Texas was picking up the job of monitoring this spectacular explosion.

"During the first minute after the explosion it emitted energy at a rate more than a million times the combined output of all the stars in the Milky Way. If you concentrated all the energy that the sun will put out over its entire 9 billion-year life into a tenth of a second, then you would have some idea of the brightness," said Michael Ashley, faculty member in the astrophysics and optics department at the University of New South Wales and a member of the ROTSE team.

Akerlof became interested in studying gamma ray bursts in the early 1990s. While they are the most powerful explosions in the universe, gamma-ray bursts are extremely hard to study because they are extremely distant, occur randomly in time and seldom last more than a minute. Small, fast, and relatively inexpensive robotic ground-based telescopes like ROTSE offer the best chance of catching early optical emissions from the bursts. ROTSE attracted national notice in 1999 when it captured the rise and fall of GRB990123, one of the brightest bursts prior to this latest event.

"The ROTSE equipment is quite modest by modern standards, but its wide field of view and fast response allow it to make measurements that more conventional instruments cannot," Akerlof said. "We have two telescopes online now, and installations in Namibia and Turkey will follow soon. Our goal is to have telescopes continuously trained on the night sky. Our motto is "The Sun never rises on the ROTSE array." That’s why we want them spread as widely as possible."

Another role for ROTSE and other small telescopes is to alert larger facilities about gamma ray bursts and other transient phenomena. "One of the most exciting things about an event like this is the way the global community of scientists pulls together, pooling their data and their different capabilities," Akerlof said.



For more information about ROTSE, visit http://www.rotse.net. To learn more about physics at the U-M visit http://www.physics.lsa.umich.edu. For more about Carl Akerlof, see http://www.physics.lsa.umich.edu/department/directory/bio.asp?ID=5.

The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399


Contact: Judy Steeh
Phone: (734) 647-3099
E-mail: jsteeh@umich.edu

Judy Steeh | EurekAlert!
Further information:
http://www.rotse.net
http://www.umich.edu/news
http://www.physics.lsa.umich.edu

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>