Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprise to physicists – protons aren’t always shaped like a basketball

07.04.2003


When Gerald A. Miller first saw the experimental results from the Thomas Jefferson National Accelerator Facility, he was pretty sure they couldn’t be right. If they were, it meant that some long-held notions about the proton, a primary building block of atoms, were wrong.



But in time, the findings proved to be right, and led physicists to the conclusion that protons aren’t always spherically shaped, like a basketball.

"Some physicists thought they did the experiment wrong," said Miller, a University of Washington physics professor. "Even I thought so initially. And then I remembered that it looked like something else I thought was wrong – our own conclusion in 1995."


In fact, by 1996 he and two colleagues were ready to publish a paper theorizing the angles at which protons would bounce off electrons after collisions in a nuclear accelerator. The measurements would tell a lot about protons’ internal electric and magnetic properties, and virtually everyone expected the two effects to cause the same kinds of collisions. But the 1996 paper described collisions that were quite different.

Miller was sure he and his colleagues had gotten it wrong somehow – until he saw the results of the actual experimental work at Jefferson, a national laboratory in Newport News, Va. Researchers at Jefferson published their initial results in 2000 and updated their findings last year.

What Miller discovered from those results is that a proton at rest can be shaped like a ball – the expected shape and the only one described in physics textbooks. Or it can be shaped like a peanut, like a rugby ball or even something similar to a bagel.

He was able to use his model to predict the behavior of quarks, and he discovered that different effects of the quarks could change the proton’s shape. The model showed that the highest-momentum quarks, those moving nearly at light speed inside the proton, produced the peanut shape.

"The quarks are like prisoners walking around in a jail cell. They just are walking very fast, and when they come to a wall they have to turn around and we can see that, indirectly, and measure it," Miller said.

If the quarks are moving more slowly, the surface indentations of the peanut shape fill in and the proton takes on a form something like a rugby ball, or a beehive. The slowest quarks produce the spherical shape that physicists generally expected to see. Another shape – a flattened round form like a bagel – is sort of a cousin to the peanut shape with the high-momentum quarks. In the peanut shape, the quarks spin in the same direction as the proton, while in the bagel shape they spin in the opposite direction as the proton.

The variety of shapes is nearly limitless and depends on the speed of the quarks inside the proton and what direction they are spinning, said Miller, who presents his findings today (April 5) during a news conference and an invited talk at the American Physical Society meeting in Philadelphia.

The Jefferson results, he said, are a small piece of the puzzle for physicists who are trying to unify the four forces of nature – gravity, electromagnetic, strong and weak – into a "theory of everything" by which they can understand the form and function of all matter. Taking this step, Miller said, allows physicists to make better predictions so other experiments can get even closer to a unified theory, and it provides clues for how to devise those experiments.

The first implication of the Jefferson findings, he said, is that "a bunch of textbooks will have to have some of their pages updated."

Beyond that, he said, it isn’t clear right now whether there will be practical implications. However, he tells the story of Michael Faraday, who presented findings in the 1830s on electromagnetic induction but was at a loss to explain the value of his findings. Yet today, the principles he developed are responsible for all the electric generators sending juice from power stations.

"You just never know until you understand something where it might lead," Miller said.


For more information, contact Miller at (206) 543-2995 or miller@phys.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Physics and Astronomy:

nachricht The cascade to criticality
02.06.2020 | ETH Zurich Department of Physics

nachricht K-State study reveals asymmetry in spin directions of galaxies
02.06.2020 | Kansas State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Perfect optics through light scattering

02.06.2020 | Power and Electrical Engineering

The digital construction site: A smarter way of building with mobile robots

02.06.2020 | Architecture and Construction

Process behind the organ-specific elimination of chromosomes in plants unveiled

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>