Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment may help size up neutrinos

19.03.2003


Our planet is bombarded every second with a large number of chargeless, seemingly massless, particles that originate in nuclear fusion reactions that power the sun. They’re called neutrinos.



According to The Standard Solar Model – the most substantiated model of the sun – the sun should emit around three times more neutrinos than are actually measured on Earth. They are a source of great interest for scientists who seek to better understand elementary particles and the physics of the sun. Indeed, one of the recipients of this year’s Nobel Prize in Physics was Raymond Davis, who first drew attention to the neutrino shortfall.

Three major research efforts (carried out by the underground large detector complexes at Sudbury Neutrino Observatory (SNO) in Canada, the U.S. National Underground Science Laboratory at Homestake and the Super-Kamikande in Japan ) have measured the number of neutrinos that actually reach Earth as a result of a specific reaction in the sun (thus the experiments are sensitive to only a small fraction of the solar neutrino spectrum). To better understand the shortfall of neutrinos on Earth, scientists have been trying to determine precisely how many neutrinos are emitted as a result of this reaction in the lab, so as to compare them with the number that actually reach Earth as measured by SNO, Kamiokande and Homestake.


However, mostly due to difficulties with the preparation and homogeneity of a central component in the reaction (the target made of the radioactive isotope of mass 7 of the beryllium element), large discrepancies persisted. The present experiment, conducted by Prof. Michael Hass of the Weizmann Institute’s Particle Physics Department, uses in a novel way a 2 mm diameter target of the beryllium 7 nuclei, prepared at the ISOLDE (CERN) laboratory and brought to the Van de Graaff accelerator of the Weizmann Institute, Israel, for the measurement of the reaction. The results of this measurement, with less than a 4% margin of error, may draw to a close this reaction’s standing as the largest source of error in the Standard Solar Model estimates of the measured neutrino flux.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>