Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists get first close look at stardust

28.02.2003


For the first time, scientists have identified and analyzed single grains of silicate stardust in the laboratory. This breakthrough, to be reported in the Feb. 27 issue of Science Express, provides a new way to study the history of the universe.


"Astronomers have been studying stardust through telescopes for decades," said first author Scott Messenger, Ph.D., senior research scientist in the Laboratory for Space Sciences at Washington University in St. Louis. "And they have derived models of what it must be like, based on wiggles in their spectral recordings. But they never dreamed it would be possible to look this closely at a grain of stardust that has been floating around in the galaxy."

Most stardust is made of tiny silicate grains, much like dust from rocks on earth. Away from city lights, you can see the dust as a dark band across the Milky Way. This dust comes from dying and exploded stars. Scientists think stars form when these dust clouds collapse and that some of this dust became trapped inside asteroids and comets when our own sun formed.

The researchers found the stardust in tiny fragments of asteroids and comets--interplanetary dust particles (IDPs) --collected 20 km above the earth by NASA planes. A typical IDP is a mishmash of more than 100,000 grains gleaned from different parts of space. Until recently, ion probes had to analyze dozens of grains at one time and so were able to deduce only the average properties of a sample.



In 2001, with help from NASA and the National Science Foundation, Washington University bought a newly available and much more sensitive ion probe. Made by Cameca in Paris, the NanoSIMS probe can resolve particles as small as 100 nanometers in diameter. A million such particles side by side would make a centimeter. The grains in IDPs range from 100 to 500 nanometers. "So like the Hubble telescope, the NanoSIMS allows us to see things on a much finer scale than ever before," Messenger said.

Lindsay P. Keller, Ph.D., at NASA’s Johnson Space Center in Houston, first examined thin slices of IDPs under the transmission electron microscope. He identified the chemical elements in single grains and determined whether the grains were crystals or coated with organic material.

Using the NanoSIMS probe, the Washington University investigators then measured the relative amounts of two isotopes of oxygen in more than a thousand grains from nine IDPs. The data told them which grains had come from stars. The researchers discovered the first grain of stardust in the first half hour of their first NanoSIMS session. "Finding something that people have been seeking for such a long time was incredibly exciting," Messenger said.

Stardust was surprisingly common in the IDPs. "We found that 1 percent of the mass of these interplanetary dust particles was stardust," Messenger explained. "So stardust is about 50 times as abundant in these particles as in meteorites, which suggests that it comes from far more primitive bodies."

The isotopic measurements identified six stardust grains from outside our solar system. Three appeared to have come from red giants or asymptotic giant branch stars, two late stages in stellar evolution. A fourth was from a star containing little metal. The fifth and sixth possibly came from a metal-rich star or a supernova.

Although this work is just beginning, some novel findings have emerged. For example, one of the grains was crystalline, which contradicts the idea that silicate stardust grains are always amorphous. "A single grain of stardust can bring down a long-established theory," Messenger said.

The researchers will probe the history of stardust with further studies of IDP chemistry and microstructure. "The interstellar medium plays an incredibly important role in star formation, but you can learn only so much by using a telescope," Messenger said. "You can find out so much more by studying actual samples."



A grant from NASA funded this research.
Images of IDPs are available.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/
http://stardust.wustl.edu
http://www.sciencemag.org/feature/express/expresstwise.shl

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>