Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists get first close look at stardust

28.02.2003


For the first time, scientists have identified and analyzed single grains of silicate stardust in the laboratory. This breakthrough, to be reported in the Feb. 27 issue of Science Express, provides a new way to study the history of the universe.


"Astronomers have been studying stardust through telescopes for decades," said first author Scott Messenger, Ph.D., senior research scientist in the Laboratory for Space Sciences at Washington University in St. Louis. "And they have derived models of what it must be like, based on wiggles in their spectral recordings. But they never dreamed it would be possible to look this closely at a grain of stardust that has been floating around in the galaxy."

Most stardust is made of tiny silicate grains, much like dust from rocks on earth. Away from city lights, you can see the dust as a dark band across the Milky Way. This dust comes from dying and exploded stars. Scientists think stars form when these dust clouds collapse and that some of this dust became trapped inside asteroids and comets when our own sun formed.

The researchers found the stardust in tiny fragments of asteroids and comets--interplanetary dust particles (IDPs) --collected 20 km above the earth by NASA planes. A typical IDP is a mishmash of more than 100,000 grains gleaned from different parts of space. Until recently, ion probes had to analyze dozens of grains at one time and so were able to deduce only the average properties of a sample.



In 2001, with help from NASA and the National Science Foundation, Washington University bought a newly available and much more sensitive ion probe. Made by Cameca in Paris, the NanoSIMS probe can resolve particles as small as 100 nanometers in diameter. A million such particles side by side would make a centimeter. The grains in IDPs range from 100 to 500 nanometers. "So like the Hubble telescope, the NanoSIMS allows us to see things on a much finer scale than ever before," Messenger said.

Lindsay P. Keller, Ph.D., at NASA’s Johnson Space Center in Houston, first examined thin slices of IDPs under the transmission electron microscope. He identified the chemical elements in single grains and determined whether the grains were crystals or coated with organic material.

Using the NanoSIMS probe, the Washington University investigators then measured the relative amounts of two isotopes of oxygen in more than a thousand grains from nine IDPs. The data told them which grains had come from stars. The researchers discovered the first grain of stardust in the first half hour of their first NanoSIMS session. "Finding something that people have been seeking for such a long time was incredibly exciting," Messenger said.

Stardust was surprisingly common in the IDPs. "We found that 1 percent of the mass of these interplanetary dust particles was stardust," Messenger explained. "So stardust is about 50 times as abundant in these particles as in meteorites, which suggests that it comes from far more primitive bodies."

The isotopic measurements identified six stardust grains from outside our solar system. Three appeared to have come from red giants or asymptotic giant branch stars, two late stages in stellar evolution. A fourth was from a star containing little metal. The fifth and sixth possibly came from a metal-rich star or a supernova.

Although this work is just beginning, some novel findings have emerged. For example, one of the grains was crystalline, which contradicts the idea that silicate stardust grains are always amorphous. "A single grain of stardust can bring down a long-established theory," Messenger said.

The researchers will probe the history of stardust with further studies of IDP chemistry and microstructure. "The interstellar medium plays an incredibly important role in star formation, but you can learn only so much by using a telescope," Messenger said. "You can find out so much more by studying actual samples."



A grant from NASA funded this research.
Images of IDPs are available.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/
http://stardust.wustl.edu
http://www.sciencemag.org/feature/express/expresstwise.shl

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>