Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent truth behind Sun’s ‘Gentle Giants’ uncovered

10.02.2003


Solar Physicists at the Mullard Space Science Laboratory, University College London (MSSL-UCL) have discovered new clues to understanding explosions on the Sun.



Coronal mass ejections are violent explosions that can fling electrified gas [plasma] with a mass greater than Mount Everest towards the Earth with destructive consequences for satellites. They can originate from active regions on the Sun, long known to consist of forests of loops filled with plasma. These active loops are roughly 50,000 km in size. However, active regions on either side of the solar disk are frequently connected by giant loops, which can bridge the Sun’s equator. These loops have long been thought of as the gentle giants of the Sun, but in a paper to be published early this year in the journal of Astronomy and Astrophysics, the researchers describe the explosive characteristics of these giants.

An example of a giant loop can clearly be seen in figure one, where the width of the arrow represents the size of the Earth. These giant loops of plasma are 450,000 km long - large enough to engulf 40 Earths. If Concorde could fly along one of these loops, it would take nearly 9 days to complete the journey!


Coronal mass ejections are violent explosions that cause all sorts of effects from the destruction of satellites, to the creation of the aurora. These effects are commonly referred to as ’space weather’. Using data taken by the Yohkoh and SOHO satellites studying the Sun, the scientists analysed the giant loops to see how frequently they erupt. In the past only one eruption had been observed and so they have been considered the gentle giants of the Sun that do not explode. The researchers found that not only can these huge structures be thrown away from the Sun, but they can also be heated up by a factor of 5, to temperatures of 14 thousand times the temperature of boiling water. They investigated how the loops explode, and it was found that the longer the loop, the more likely it is to erupt - so these are culprits to watch more carefully in the future!

Alexi Glover, part of the space weather team at the European Space Agency [ESA], explains, "These huge loops have been observed for many years - but their connection with coronal mass ejections is only just being understood. In the future we hope to be able to predict coronal mass ejections before they take place, and step by step we are heading towards that goal."

Because of our increasing reliance on communication and navigation satellites for TV, GPS and national and international security, it is vital that we understand how the Sun can release these explosions.

Dr. Louise Harra of MSSL-UCL says, "Space weather is a rapidly developing field, and a vital key to progress is by understanding in detail the physics of Sun. The UK plays a leading role in solar physics and these new results are helping us make substantial advancements in our understanding of these beautiful, but potentially hazardous, coronal mass ejections."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/Press/giant_loops.asp

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>