Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent truth behind Sun’s ‘Gentle Giants’ uncovered

10.02.2003


Solar Physicists at the Mullard Space Science Laboratory, University College London (MSSL-UCL) have discovered new clues to understanding explosions on the Sun.



Coronal mass ejections are violent explosions that can fling electrified gas [plasma] with a mass greater than Mount Everest towards the Earth with destructive consequences for satellites. They can originate from active regions on the Sun, long known to consist of forests of loops filled with plasma. These active loops are roughly 50,000 km in size. However, active regions on either side of the solar disk are frequently connected by giant loops, which can bridge the Sun’s equator. These loops have long been thought of as the gentle giants of the Sun, but in a paper to be published early this year in the journal of Astronomy and Astrophysics, the researchers describe the explosive characteristics of these giants.

An example of a giant loop can clearly be seen in figure one, where the width of the arrow represents the size of the Earth. These giant loops of plasma are 450,000 km long - large enough to engulf 40 Earths. If Concorde could fly along one of these loops, it would take nearly 9 days to complete the journey!


Coronal mass ejections are violent explosions that cause all sorts of effects from the destruction of satellites, to the creation of the aurora. These effects are commonly referred to as ’space weather’. Using data taken by the Yohkoh and SOHO satellites studying the Sun, the scientists analysed the giant loops to see how frequently they erupt. In the past only one eruption had been observed and so they have been considered the gentle giants of the Sun that do not explode. The researchers found that not only can these huge structures be thrown away from the Sun, but they can also be heated up by a factor of 5, to temperatures of 14 thousand times the temperature of boiling water. They investigated how the loops explode, and it was found that the longer the loop, the more likely it is to erupt - so these are culprits to watch more carefully in the future!

Alexi Glover, part of the space weather team at the European Space Agency [ESA], explains, "These huge loops have been observed for many years - but their connection with coronal mass ejections is only just being understood. In the future we hope to be able to predict coronal mass ejections before they take place, and step by step we are heading towards that goal."

Because of our increasing reliance on communication and navigation satellites for TV, GPS and national and international security, it is vital that we understand how the Sun can release these explosions.

Dr. Louise Harra of MSSL-UCL says, "Space weather is a rapidly developing field, and a vital key to progress is by understanding in detail the physics of Sun. The UK plays a leading role in solar physics and these new results are helping us make substantial advancements in our understanding of these beautiful, but potentially hazardous, coronal mass ejections."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/Press/giant_loops.asp

More articles from Physics and Astronomy:

nachricht Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films
23.08.2019 | Universität Hamburg

nachricht Building an atomic-scale vacuum trap for spin-polarized electrons
23.08.2019 | University of Hamburg Sonderforschungsbereich 668

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>