Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma probe scientists ready for Rosetta blast-off

14.01.2003


Scientists who built and will control the instruments to investigate plasma changes around a comet describe their contribution to the ten year long mission at a pre-launch press briefing in London.



While the actual launch date for the European Space Agency’s Rosetta mission has yet to be confirmed, the scientists, engineers and technicians behind the plasma-detecting instruments on board the spacecraft are all ready to begin the journey to comet Wirtanen they hope will return a rich scientific bounty.

"We’re not very familiar with plasma here on Earth, but it does exist all around us, for example, in fluorescent lights or the flame of a match. It’s simply a gas which has become electrically charged," says Chris Carr, spokesman for the Rosetta Plasma Consortium instruments, based at Imperial College London.


"Outside the confines of our atmosphere on earth, the vacuum of space is filled with a very, very dilute plasma - maybe only a thousand atoms in each litre of space."

The Rosetta Plasma Consortium has built highly sensitive instruments capable of detecting and measuring the properties of this diffuse plasma.

The sensors will be switched on well before the cameras are able to see any activity on the surface of the comet, making it likely that plasma instruments will be one of the first to detect the telltale signature of the comet.

The Plasma Consortium’s chief interest is to learn how the solar wind - a stream of plasma that flows out from the Sun and fills the Solar System - interacts with the comet itself.

"A lot of the gas which comes off the comet is actually turned into plasma by the action of the strong ultra-violet light from the Sun," explains Mr Carr.

"So there is a source of plasma pushing outwards from the comet which meets the solar wind head on, producing a ’bubble’ of comet plasma in a sea of solar wind."

The plasma instruments will study the structure of this bubble, which measures about a million kilometres wide, and compares with a nucleus size of the comet of just one kilometre.

"One of the things we’re really excited about is that we will be monitoring the comet over a long period of time, so we will be able to watch as the comet activity goes from nothing to a really strong outflow of material," says Mr Carr.

The plasma instruments weigh just over 7kg, and because Rosetta is far out in deep space, with very little sunlight shining on the solar panels, have been designed to consume less than a quarter of the power of a single light bulb.

The plasma investigation will be carried out by a group of five instruments built by space researchers from Sweden, Germany, France, USA and the UK.

Scientists at Imperial College London built the Plasma Interface Unit - the ’nervous system’ - that links up the five ultra-sensitive plasma-detecting probes aboard Rosetta (See notes to editors).

Assuming a successful Rosetta launch before the end of January 2003, theirs will be the first scientific instrument to be turned on at the ’commissioning’ stage due to take place from February at the European Space Agency operations centre in Darmstadt, Germany.

The PIU itself weighs about 3kg and is the size of two shoe boxes on top of each other, and has been the focus of a number of technical innovations.

"Developing this unit, the ’nervous system’ for the plasma instruments, was a constant balancing act between miniaturisation to save space and weight and maintaining its reliability to give continuous operation in space for ten years," says Dr Chris Lee, Rosetta Plasma Consortium Operations Manager, based at Imperial College London.

For example, the walls of the box were machined down from sheets of aluminium 2.54 centimetres (an inch) thick to just 0.3mm in places - a machining task that required a new technical innovation from Ray Swain, head of the Department of Physics workshops, as standard techniques left the metal warped.

Scientists from Imperial’s Space and Atmospheric Physics Group have extensive experience in building and operating plasma instruments aboard space missions including those that have flown on the Cluster mission around Earth, the Cassini mission to Saturn, the Double Star mission around Earth and the Ulysses mission to the Sun.

The Imperial team behind the PIU was recently promoted from Co-Investigator to Principal Investigator status.

Contact: Tom Miller
e-mail: t.miller@imperial.ac.uk

Tom Miller | EurekAlert!

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>