Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma probe scientists ready for Rosetta blast-off

14.01.2003


Scientists who built and will control the instruments to investigate plasma changes around a comet describe their contribution to the ten year long mission at a pre-launch press briefing in London.



While the actual launch date for the European Space Agency’s Rosetta mission has yet to be confirmed, the scientists, engineers and technicians behind the plasma-detecting instruments on board the spacecraft are all ready to begin the journey to comet Wirtanen they hope will return a rich scientific bounty.

"We’re not very familiar with plasma here on Earth, but it does exist all around us, for example, in fluorescent lights or the flame of a match. It’s simply a gas which has become electrically charged," says Chris Carr, spokesman for the Rosetta Plasma Consortium instruments, based at Imperial College London.


"Outside the confines of our atmosphere on earth, the vacuum of space is filled with a very, very dilute plasma - maybe only a thousand atoms in each litre of space."

The Rosetta Plasma Consortium has built highly sensitive instruments capable of detecting and measuring the properties of this diffuse plasma.

The sensors will be switched on well before the cameras are able to see any activity on the surface of the comet, making it likely that plasma instruments will be one of the first to detect the telltale signature of the comet.

The Plasma Consortium’s chief interest is to learn how the solar wind - a stream of plasma that flows out from the Sun and fills the Solar System - interacts with the comet itself.

"A lot of the gas which comes off the comet is actually turned into plasma by the action of the strong ultra-violet light from the Sun," explains Mr Carr.

"So there is a source of plasma pushing outwards from the comet which meets the solar wind head on, producing a ’bubble’ of comet plasma in a sea of solar wind."

The plasma instruments will study the structure of this bubble, which measures about a million kilometres wide, and compares with a nucleus size of the comet of just one kilometre.

"One of the things we’re really excited about is that we will be monitoring the comet over a long period of time, so we will be able to watch as the comet activity goes from nothing to a really strong outflow of material," says Mr Carr.

The plasma instruments weigh just over 7kg, and because Rosetta is far out in deep space, with very little sunlight shining on the solar panels, have been designed to consume less than a quarter of the power of a single light bulb.

The plasma investigation will be carried out by a group of five instruments built by space researchers from Sweden, Germany, France, USA and the UK.

Scientists at Imperial College London built the Plasma Interface Unit - the ’nervous system’ - that links up the five ultra-sensitive plasma-detecting probes aboard Rosetta (See notes to editors).

Assuming a successful Rosetta launch before the end of January 2003, theirs will be the first scientific instrument to be turned on at the ’commissioning’ stage due to take place from February at the European Space Agency operations centre in Darmstadt, Germany.

The PIU itself weighs about 3kg and is the size of two shoe boxes on top of each other, and has been the focus of a number of technical innovations.

"Developing this unit, the ’nervous system’ for the plasma instruments, was a constant balancing act between miniaturisation to save space and weight and maintaining its reliability to give continuous operation in space for ten years," says Dr Chris Lee, Rosetta Plasma Consortium Operations Manager, based at Imperial College London.

For example, the walls of the box were machined down from sheets of aluminium 2.54 centimetres (an inch) thick to just 0.3mm in places - a machining task that required a new technical innovation from Ray Swain, head of the Department of Physics workshops, as standard techniques left the metal warped.

Scientists from Imperial’s Space and Atmospheric Physics Group have extensive experience in building and operating plasma instruments aboard space missions including those that have flown on the Cluster mission around Earth, the Cassini mission to Saturn, the Double Star mission around Earth and the Ulysses mission to the Sun.

The Imperial team behind the PIU was recently promoted from Co-Investigator to Principal Investigator status.

Contact: Tom Miller
e-mail: t.miller@imperial.ac.uk

Tom Miller | EurekAlert!

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>