Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes form first, galaxies follow: new quasar study

09.01.2003


A study at Ohio State University has uncovered more evidence that black holes form before the galaxies that contain them.


Artist’s rendering of a black hole in a globular cluster. Photo courtesy NASA and G. Bacon, Space Telescope Science Institute.


Marianne Vestergaard



The finding could help resolve a long-standing debate, said Marianne Vestergaard, a postdoctoral fellow in astronomy at Ohio State.

Vestergaard came to this conclusion when she studied a collection of very energetic, active galaxies known as quasars as they appeared some 12 billion years ago, when the universe was only one billion years old. While the quasars were obviously young -- they contained large stellar nurseries in which new stars were forming -- each also contained a very massive, fully formed black hole.


More and more, black holes are being found at the center of galaxies. As the close relationship between black holes and galaxies has emerged, astronomers have debated which of the two came first.

One model holds that mass builds up at the center of galaxies, eventually collapsing so black holes can form. Another holds the opposite -- that black holes exist first, and their immense gravity draws gas, dust, and stars together, causing galaxies to form.

Looking at this evidence, I have to think that black holes start forming before galaxies do, or form at a much faster rate, or both, Vestergaard said. She described her study January 8 at the American Astronomical Society meeting in Seattle.

One year ago, Vestergaard announced that she had developed a new method for estimating the mass of very distant black holes, ones that existed far in the past. The method involves comparing the spectrum of light emitted by the quasars that host the black holes to spectra from quasars existing today.

Astronomers consider a galaxy active when it emits much more energy from its nucleus than can be accounted for by its stars alone. This radiation is detected at wavelengths that span from radio waves to X-rays, Vestergaard explained.

Quasars are the most energetic of the active galaxies, from which all the energy spills out of a very small region at the center, equal to about one-millionth of the diameter of the total galaxy. It is in these central regions that black holes reside.

For this latest study, Vestergaard used her method to examine a special set of distant quasars. Part of her data came from the Sloan Digital Sky Survey, a collaborative project that maps the universe from Apache Point Observatory in New Mexico. She compared the spectra from those quasars to other quasars that are closer to Earth, including ones documented by the Bright Quasar Survey.

In the several hundred quasars she studied, a pattern emerged: even the smallest, most quiescent of these active galaxies contained a massive black hole, on the order of 100 million times more massive than our sun.

Theoretically, the black holes should have taken a long time to grow that big, if they started out as small seed black holes and grew by accretion alone; yet, their host galaxies showed ample signs of youth, such as intense star formation, copious amounts of molecular gas and significant dust production.

This information could help astronomers better understand active galaxies, as well as more typical inactive galaxies such as our own.

All these issues are intertwined -- the powering of the central engine of an active galaxy, the forming of black holes, the forming of galaxies, she said.

She added that future developments in this area will depend on KRONOS, a satellite proposed to NASA by Bradley Peterson, professor of astronomy at Ohio State, and his partners from around the world. KRONOS will be able to image material spiraling into black holes with a resolution 10,000 times finer than now possible with the Hubble Space Telescope.

For instance, how fast do black holes grow? Do they grow only by accumulating matter from around themselves, or do they also need some cataclysmic trigger event, such as when two galaxies collide? We need deep surveys of the universe to answer these questions, Vestergaard said.

Other pieces of the puzzle will come from researchers such as Ohio State graduate student Adam Steed, who is working with astronomy professor David Weinberg to model black hole growth.

If we could construct a complete model of what happens to a black hole over its lifetime, we could look at real black holes from different points in the past, and see whether our model is consistent, Vestergaard said. That would be really exciting, and we would understand more about what is happening in the universe today.

Vestergaard remains optimistic that astronomers can conquer these hurdles in the near future.

I never thought we would come to a day in my lifetime when we could measure the mass of such distant black holes, she said. But here we are.


Marianne Vestergaard, (614) 292-5807; Vestergaard.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Marianne Vestergaard | EurekAlert!
Further information:
http://www.osu.edu/researchnews/archive/bhfirst.htm

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>