Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibrations of the Cosmic Drumhead

06.01.2003


A multiconnected topology translates into the fact that any object in space may possess several copies of itself in the observable Universe. For an extended object like the region of emission of the CMB radiation we observe (the so-called last scattering surface) it can happen that it intersects with itself along pairs of circles [5]. In this case;; this is equivalent to say that an observer (located at the center of the last scattering surface) will see the same region of the Universe from different directions. As a consequence;; the temperature fluctuations will match along the intersection of the last scattering surface with itself;; as illustrated in the above figure. This CMP map is simulated for a multi-connected flat space - namely a cubic hypertorus whose length is 3.17 times smaller than the diameter of the last scattering surface.


Cosmologists hope to "hear the shape of space", namely its topology, by analyzing in detail the temperature fluctuations in the cosmic microwave background radiation (CMB). An international team of cosmologists, including researchers from l’Observatoire de Paris, has recently developped a model for the vibrations of the universe. For the first time [1], they have simulated high resolution CMB maps containing the signatures of a wide class of topologies, for comparison with the forthcoming MAP satellite data in early 2003.

The shape of space

In recent years, cosmologists have become interested in the global shape of space [2]. Previously, most of them had neglected the fact that, even if space is flat on a large scale, it can take many different shapes, for instance that of a doughnut-like hypertorus. A space of a given curvature admits a number a topologies. Indeed, 18 flat topologies along with an infinite number of spherical and hyperbolic ones are theoretical candidates to describe the shape of physical space.



Although recent CMB observations constrain the value of space curvature to a very narrow range about zero, they still leave open the question of whether the average curvature is exactly zero (corresponding to a flat universe) slightly positive (spherical universe) or slightly negative (hyperbolic universe), and above all whether the topology is simple (for instance an infinite flat space) or not (for instance a finite flat hypertorus).
In a previous article [3], three authors have proved that the spherical topologies would be more easily detectable observationally than hyperbolic or flat ones. The reason is that, no matter how close space is to perfect flatness, only a finite number of spherical shapes are excluded by observational constraints. Due to the special structure of spherical spaces, topological imprints would be potentially detectable within the observable universe. Thus cosmologists are taking a renewed interest in spherical spaces as possible models for the physical universe. Now the main question is : how to detect the topology of space?

The Universe as a drumhead

If you sprinkle fine sand uniformly over a drumhead and then make it vibrate, the grains of sand will collect in characteristic spots and figures, called Chladni patterns. These patterns reveal much information about the size and the shape of the drum and the elasticity of its membrane. In particular, the distribution of spots depends not only on the way the drum vibrated initially but also on the global shape of the drum, because the waves will be reflected differently according to whether the edge of the drumhead is a circle, an ellipse, a square, or some other shape.

In cosmology, the early Universe was crossed by real acoustic waves generated soon after Big Bang. Such vibrations left their imprints 300 000 years later as tiny density fluctuations in the primordial plasma. Hot and cold spots in the present-day 2.7 K CMB radiation reveal those density fluctuations. Thus the CMB temperature fluctuations look like Chladni patterns resulting from a complicated three-dimensional drumhead that vibrated for 300 000 years. They yield a wealth of information about the physical conditions that prevailed in the early Universe, as well as present geometrical properties like space curvature and topology. More precisely, density fluctuations may be expressed as combinations of the vibrational modes of space, just as the vibration of a drumhead may be expressed as a combination of the drumhead’s harmonics.

For the first time, a team of physicists has shown how the shape of a spherical space can be heard in a unique way. They calculated the harmonics (the so-called "eigenmodes of the Laplace operator") for most of the spherical topologies [4]. Next, starting from a set of initial conditions fixing how the universe originally vibrated (the so-called Harrison-Zeldovich spectrum), they evolved the harmonics forward in time to simulate realistic CMB maps for a number of topologies, including flat and spherical ones [1].

Waiting for the data

Balloon-borne CMB experiments (Boomerang, DASI, Archeops) have put tight constraints on the curvature of space, but provide too little data to test the topology of the Universe because they cover only a small portion of the sky. The situation is about to change dramatically with the MAP (Microwave Anisotropy Probe) satellite mission.

Launched by NASA in April, 2001, it will provide high resolution maps of CMB fluctuations on the whole sky, excluding the portion obscured by our own Milky Way galaxy. The 6-month MAP data will be released late January or early February 2003. A topological signal as predicted in [5], and simulated in the maps of [1], may be subtly encoded in these data, and may eventually answer the fascinating question whether space is finite.


Peer reviewed publications and references

[1] A. Riazuelo, J.-P. Uzan, R. Lehoucq and J. Weeks, "Simulating Cosmic microwave background maps in multi-connected universes" (e-print astro-ph/0212223).

[2] J.- P. Luminet: "L’Univers chiffonné", Fayard, Paris, 2001, 369 p.
R. Lehoucq: "L’univers a-t-il une forme ?", Flammarion, Paris 2002, 152 p.
J. Weeks : "The Shape of Space", Dekker, 2nd edition, 2001, 328 p.

[3] J. Weeks, R. Lehoucq and J.-P. Uzan: "Detecting topology in a Nearly Flat Spherical Universe", (e-print astro-ph/0209389).

[4] R. Lehoucq, J. Weeks, J.-P. Uzan, E. Gausmann and J.-P. Luminet, "Eigenmodes of 3-dimensional spherical spaces and their application to cosmology", Classical and
Quantum Gravity,(2002) 19, 4683-4708 (e-print gr-qc/0205009).

[5] N. Cornish, D. Spergel and G. Starkman,"Circles in the sky: finding topology with the microwave background radiation", Classical and Quantum Gravity (1998), 15,
2657-2670 (e-print astro-ph/9801212).

Jean-Pierre Luminet | alfa
Further information:
http://luth2.obspm.fr/Compress/jan03_riaz.en.html

More articles from Physics and Astronomy:

nachricht Fusion by strong lasers
05.12.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht NASA's OSIRIS-REx mission explains Bennu's mysterious particle events
05.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>