Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Black Holes and Disks on the Balance

31.12.2002


Quasars and active galactic nuclei (AGN) are likely powered by matter accretion onto a super-massive black hole located at their center. Before being swallowed by the black hole, matter spirals towards the center, while forming an accretion disc. Unfortunately, such a disc is too small so that one can in general solve it with present day telescopes. But the technique of radio interferometry with very long base (VLBI, with base length of the size of the earth’s radius) make it possible somehow. In some objects, very intense maser emission from small molecular clouds containing water vapor and probably related to the disc have been detected. From the rotation curve of the masing disc, one can deduce some of its properties (the disc mass, its size).



Jean-Marc Huré, from the Laboratory Universe and Theories (LUTH) at Observatory of Paris-Meudon and University Paris VII, comes to show that in galaxy NGC 1068, the accretion disc would have a mass comparable with that of the black hole (with about 9 million solar masses), and a size reaching one parsec (3 light-years). Such informations bring an additional proof that the discs of quasars and AGN are indeed gigantic systems.

Quasars were discovered at the end of the Sixties. They are, with their low luminosity analogues called "Active Galactic Nuclei" (or AGN), among the most luminous objects in the Universe. Today still, all the mechanisms which could release such a power are far from being understood. However, it seems rather well established that the matter accretion on a super-massive black hole is the key-process.


The structure and the dynamics of the accretion disc remain quite mysterious. The disc is not directly observable because the resolution of current telescopes is still insufficient. It is primarily studied at short wavelengths (UV, X and gamma rays). But short wavelength spectra give information only on the internal regions of the disc (scale of the micro-parsec), very close to the black hole. The external parts of the disc (the milliparsec-scale) are made up of colder gas and radiate in the visible, infra-red, and mm bands. One suspects that at these distances, the mass of the disc (generally regarded as small) starts to play a role on its own dynamics, and thus on its evolution and its structure. At the parsec scale for example, models indicate that the mass of the disc could reach (even exceed) that of the black hole. One then expects very particular effects, like a non-keplerian rotation, and the generation of gravitational instabilities (spiral waves, etc.) who could lead to the formation of compact objects in the disc itself (like stars or planets) (Collin & Zahn, 1999, A & A, 344, 433). A point is that, the accretion disc is made of a certain amount of gas and dust, and thus it inevitably generates a certain gravity field. When this mass exceeds a fraction of the central mass (about 10% typically), then the departure to the keplerian rotation law is significant: the centrifugal force is no more compensated by the central attraction only but by the combined gravitational attraction of the black hole and of the disc.

From this point of view, an interesting case is that of active galaxy (of Seyfert-2 type) NGC 1068. One observed in this object an intense maser emission of water molecules at a distance ranging between 0.65 and 1.1 parsec of the black hole. These emissions would take place at the surface of the disc. The external rotation curve deduced from Doppler shifts does not resemble the kepler law. A recent calculation by Jean-Marc Huré, from the Observatory of Paris-Meudon and University PAris VII, (employing an inversion method of the Poisson’s equation) comes to support the assumption that the external disc could be well responsible for this non-keplerian behavior (Huré J.M., A & A Let, 2002, 395,21).

The results state indeed that one can reproduce this rotation curve provided that the outer disc has quite specific properties. Thus, parameters of the disc have been obtained. In particular, the disc would have a mass close to that of the black hole (approximately 9 million solar masses) and would be in a marginally stable state with respect to self-gravity. In addition to the constraints on the disc structure, the study also gives a value of the mass of the central black hole, inaccessible in such a galaxy by usual methods (briefly, because of a strong obscuration of this system by a torus of dust which interposes on the line of sight).

Another interesting galaxy is NGC 4258 : in this object, maser emission was also detected but here, the rotation of the disc seems in perfect agreement with Kepler’s law. Would the disc of NGC 4258 be thus not very massive, contrary to the case of NGC 1068? It is what everyone thinks... However a similar study (Huré J-M., astro-ph/0210421) shows that such a conclusion is far from being acquired. Indeed, it is possible to reproduce a keplerian rotation curve with a disc finally rather massive, reducing by 25% the mass of the black hole that one seemed to know quasi-perfectly.

The moral of the history is that the mass in the central parsec of the AGN and the Quasars is probably not concentrated into the black hole only. Other objects orbiting at these distances, to begin with the accretion disc, might contain a noticeable (even dominant) fraction of it. The inversion method used here enables to see indirectly how the mass is spatially distributed, to refine or to correct our estimations of black hole masses, and gradually to unveil the external part of the accretion discs.

Jean-Pierre Luminet | alfa
Further information:
http://luth2.obspm.fr/Compress/dec02_hure.en.html

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>