Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integral’s first look at the gamma-ray Universe

19.12.2002


ESA’s gamma-ray satellite, Integral, is fully operational. Today Integral’s first ground-breaking images of the high-energy Universe were presented in Paris, France. Astronomers call such initial observations ’first-light’ images.



The high-energy Universe is a violent place of exploding stars and their collapsed remnants such as the ultra-compressed neutron stars and, at the most extreme, all-consuming black holes. These celestial objects create X-rays and gamma rays that are many times more powerful than the optical radiation we can see with our eyes and optical telescopes. Integral’s Principal Investigators – the scientists responsible for the instruments on board - explain the crucial role that high-energy missions like Integral play in astronomy. “X-ray and gamma-ray astronomy is a pathfinder to unusual objects. At optical wavelengths, the number of stars is staggering. At X-ray and gamma-ray wavelengths, there are fewer objects, but the ones that remain are the really peculiar ones.”

As a first test, Integral observed the Cygnus region of the sky, looking particularly at that enigmatic object, Cygnus X-1. Since the 1960s, we have known this object to be a constant generator of high-energy radiation. Most scientists believe that Cygnus X-1 is the site of a black hole, containing around five times the mass of our Sun and devouring a nearby star. Observing Cygnus X-1, which is relatively close by in our own Galaxy - ’only’ 10 000 light years from us - is a very important step towards understanding black holes. This will also help understand the monstrous black hole - three million times the mass of our Sun - at the centre of our Galaxy.


During the initial investigations, scientists had a pleasant surprise when Integral captured its first gamma-ray burst. These extraordinary celestial explosions are unpredictable, occurring from random directions about twice a day. Their precise origin is contentious: they could be the result of massive stars collapsing in the distant Universe or alternatively the result of a collision between two neutron stars. Integral promises to provide vital clues to solving this particular celestial mystery.

To study these peculiarities, Integral carries two powerful gamma-ray instruments. It has a camera, or imager, called IBIS and a spectrometer, SPI. Spectrometers are used to measure the energy of the gamma rays received. Gamma-ray sources are often extremely variable and can fluctuate within minutes or seconds. It is therefore crucial to record data simultaneously in different wavelengths. To achieve this, Integral also carries an X-ray and an optical monitor (JEM-X and OMC). All four instruments will observe the same objects, at the same time. In this way they can capture fleeting events completely. Integral sends the data from all the instruments to the Integral Science Data Centre (ISDC) near Geneva, Switzerland, where they are processed for eventual release to the scientific community.

"We have been optimising the instruments’ performance to produce the best overall science. We expect to be ready for astronomers around the world to use Integral by the end of the year," says Arvind Parmar, acting Integral Project Scientist at ESA. "These images and spectra prove that Integral can certainly do the job it was designed to do, and more", which is to unlock some of the secrets of the high-energy Universe.

Integral’s primary mission will last for two years, but it is carrying enough fuel to continue for five years, all being well.

Dr Arvind Parmar | alfa
Further information:
http://www.esa.int/export/esaCP/ESADW18708D_Expanding_0.html

More articles from Physics and Astronomy:

nachricht Thin films from Braunschweig on the way to Mercury
19.10.2018 | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

nachricht Extremely close look at electron advances frontiers in particle physics
19.10.2018 | National Science Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>