Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot Spot Cosmic Accelerators

25.11.2002


VLT Images Intergalactic Shock

The Universe is a violent place - as astronomers use increasingly sensitive means and methods to study the diverse processes out there, they become aware of the extraordinary forces acting in the space that surrounds us.

With larger telescopes and ever-more sophisticated instruments, new information is gained about remote celestial objects and their behaviour. Among the most intriguing ones are the radio galaxies which emit prodiguous amounts of energy, in the form of fast-moving particles and intense electromagnetic radiation.

One of these is known as 3C 445; it is located near the celestial equator within the zodiacal constellation Aquarius (The Waterman), at a distance of about 1 billion light-years. It most probably harbours a black hole at its centre, more massive than the one at the centre of our own galaxy, the Milky Way (ESO PR 19/02). This galaxy was first observed from Cambridge (United Kingdom) in the 1950’’s and was listed as radio source no. 445 in the Third Cambridge Catalogue (1959), hence the name.

Later observations revealed a strong outflow from this galaxy’’s active centre, visible on radio maps as two opposite plasma jets with strong synchrotron radiation ([2]) originating from rapidly moving electrons in the associated magnetic field (image "a" in PR Photo 26/02).

Now, a trio of European astronomers [1] have used two advanced instruments, ISAAC and FORS1 on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) to obtain near-infrared images of these jets (images "b" and "c" in PR Photo 26/02).

As can be clearly seen on the radio picture of 3C 445 obtained with the NRAO Very Large Array (VLA) radio facility ("a"), the plasma jets of fast particles emanating from the galaxy ram into the surrounding intergalactic medium (mostly primordial hydrogen), thereby producing two "shocks", both at a distance of approximately 1.5 million light-years from the central galaxy and with particularly strong synchrotron emission. With a total length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic.

The region where the jets collide with the intergalactic medium are known as "hot spots". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 micron) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 micron) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image.

This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far.

The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites.

The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations.

The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active cosmic objects.

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2002/phot-26-02.html

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>