Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbulence Restrains Itself

08.11.2002


Like rapidly flowing gases and liquids, magnetically confined plasmas in tokamaks and related fusion devices exhibit a high degree of turbulence, which can generally destroy the optimal conditions for producing fusion energy. In a deeply encouraging new result, scientists have experimentally confirmed that turbulence can actually limit its own ability to wreak havoc.


Theoretical picture of self-generated turbulence flows in a tokamak cross section


Computer simulations of turbulence in the DIII-D tokamak agree with recent DIII-D experiments. Color contours illustrate the highly elongated structure of turbulence in the electron density



Researchers at the DIII-D tokamak at General Atomics have discovered that turbulence generates its own flows that act as a self-regulating mechanism. These flows, which are predicted theoretically and have been observed in computer simulations, create a "shearing" or tearing action that destroys turbulent eddies, as indicated by the figure. Such flows are like the large-scale zonal jets and patterns seen in the atmospheres of Jupiter and other large planets.

These turbulent flows have been clearly observed in recent experiments at DIII-D by using a special imaging system. The imaging measurements are obtained at a rate of one million frames per second and have a spatial resolution of about 1 cm. Observing and identifying these unique turbulence flows experimentally, and comparing their characteristics with theory, is helping to advance researchers’ understanding of this complex and crucial phenomena taking place in high temperature fusion plasmas.


The roiling turbulence inside tokamaks represents some of the most complex physics on the planet. Using the full power of the world’s largest supercomputers, scientists in separate work have now been able to fully simulate the movement of tokamak particles and heat due to turbulence. Implementing new algorithms to incorporate very complex physics, they included the effects of super-fast electrons and the recent practice of rotating the plasma, like horses in a merry go round, for higher-pressure tokamak operation and higher-energy output. Making it possible to directly compare DIII-D turbulence experiments with numerical calculations for the first time, these simulations may also help greatly in making reliable predictions for larger tokamaks and future commercial-scale fusion reactors.

Contacts
D-III experiments:
A collaboration between the University of Wisconsin-Madison, and the DIII-D National Fusion Facility at General Atomics.
George R. McKee, (858) 455-2419, mckee@fusion.gat.com
Raymond J. Fonck, University of Wisconsin-Madison, General Atomics

Supercomputer simulations:
Jeff Candy, General Atomics, (858) 455-2593, jeff.candy@gat.com

David Harris | EurekAlert!
Further information:
http://www.aps.org/meet/DPP02/baps/press/press6.html
http://www.aps.org/

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>