Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab’s Hall A experiment examines how energy becomes matter

01.11.2002



Just as matter can be converted into energy, so too can energy become matter. That’s what five-dozen Jefferson Lab researchers were counting on for an experiment in Hall A

Albert Einstein figured it out by 1905, as he was formulating his special theory of relativity: while you can’t exactly get something from nothing, you can come close. His famous formula, E=MC2, works both ways. Just as matter can be converted into energy, so too can energy become matter.

That’s just what five dozen researchers were counting on with a Jefferson Lab experiment in Hall A that used the Lab’s electron beam and a liquid hydrogen target to bring to life an unusual particle known as a kaon. The kaon’s unique structure could prove of great help to cosmologists, who should be able to use the results of experiments like the Hall A effort to develop structural models of stellar objects made up of exotic, or "strange" matter, matter that includes kaons as part of their own subatomic architectures. Preliminary findings indicate that kaon production results from the interactions of the particles of light known as photons. The photons create more than just kaons, however. They also produce other particles, known as lambda and sigma, with their own distinctive quark structure. All arise from a constantly churning sea of "virtual" particles that can’t exist until bumped by a jolt of energy such as that provided by the Lab’s accelerator.



"When these things get produced, we’re trying to understand how they’re made," says experiment co-spokesperson Pete Markowitz, associate professor of physics at Florida International University in Miami. "And: what do they look like? We’re trying to come up with a detailed picture of how quarks ’live’ in the nucleus."

The first challenge confronting the Hall A researchers in their experimental run that concluded this past March was to actually make enough of the rare, fleeting particles. The task was a difficult one, considering that kaons contain a matter-antimatter pair of an "anti-strange" quark and one "up" quark (quarks are thought by many scientists to be the basic building blocks of matter). Should a particle of antimatter collide with one of normal matter, both particles are instantly converted to energy, a process that doesn’t lend itself to easy observation.

The Hall A scientists succeeded in making enough kaons for long enough to be able to probe the particle’s internal details. In essence, the researchers "paid" for the kaon-constituent quarks to come into existence by using the electron beam’s energy. "We created a kaon essentially out of nothing by giving it a jolt of energy," Markowitz says. "Then our job was to measure the properties of that creation. We wanted to determine which parts of the kaon are quark-like. We’d like to identify exactly how kaons get made. What description, theoretically speaking, is the most appropriate?"

Planning for the first kaon experiment began in 1993 when Markowitz first conceived the idea. A follow-on investigation that will study another strange-matter particle, known as a hyperon, is scheduled for 2004 and will involve a team of up to 80 researchers, most of whom worked on the kaon experiment.

"[The hyperon study] will be the first time in history that people will be able to see what’s going on, and at high resolution," Markowitz says. "We’ll be creating a new form of matter. I’m really excited about this experiment."

by James Schultz

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht ATLAS telescope discovers first-of-its-kind asteroid
25.05.2020 | University of Hawaii at Manoa

nachricht New gravitational-wave model can bring neutron stars into even sharper focus
22.05.2020 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>